• Title/Summary/Keyword: protein carrier

Search Result 201, Processing Time 0.026 seconds

Effect of Acylation on the Structure of the Acyl Carrier Protein P

  • Hyun, Ja-shil;Park, Sung Jean
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.19 no.3
    • /
    • pp.149-155
    • /
    • 2015
  • Acyl carrier protein is related with fatty acid biosynthesis in which specific enzymes are involved. Especially, acyl carrier protein (ACP) is the key component in the growing of fatty acid chain. ACP is the small, very acidic protein that covalently binds various intermediates of fatty acyl chain. Acylation of ACP is mediated by holo-acyl carrier protein synthase (ACPS), which transfers the 4'PP-moiety of CoA to the 36th residue Ser of apo ACP. Acyl carrier protein P (ACPP) is one of ACPs from Helicobacter plyori. The NMR structure of ACPP consists of four helices, which were reported previously. Here we show how acylation of ACPP can affect the overall structure of ACPP and figured out the contact surface of ACPP to acyl chain attached during expression of ACPP in E. coli. Based on the chemical shift perturbation data, the acylation of ACCP seems to affect the conformation of the long loop connecting helix I and helix II as well as the second short loop connecting helix II and helix III. The significant chemical shift change of Ile 54 upon acylation supports the contact of acyl chain and the second loop.

The Mitochondrial Tricarboxylate Carrier of Silver Eel: Chemical Modification by Sulfhydryl Reagents

  • Capobianco, Loredana;Impagnatiello, Tecla;Ferramosca, Alessandra;Zara, Vincenzo
    • BMB Reports
    • /
    • v.37 no.5
    • /
    • pp.515-521
    • /
    • 2004
  • The tricarboxylate (or citrate) carrier was purified from eel liver mitochondria and functionally reconstituted into liposomes. Incubation of the proteoliposomes with various sulfhydryl reagents led to inhibition of the reconstituted citrate transport activity. Preincubation of the proteoliposomes with reversible SH reagents, such as mercurials and methanethiosulfonates, protected the eel liver tricarboxylate carrier against inactivation by the irreversible reagent N-(1-pyrenyl)maleimide (PM). Citrate and L-malate, two substrates of the tricarboxylate carrier, protected the protein against inactivation by sulfhydryl reagents and decreased the fluorescent PM bound to the purified protein. These results suggest that the eel liver tricarboxylate carrier requires a single population of free cysteine(s) in order to manifest catalytic activity. The reactive cysteine(s) is most probably located at or near the substrate binding site of the carrier protein.

Screening of New Antibiotics Inhibiting Bacterial Enoyl-Acyl Carrier Protein Reductase (Fabl) (세균의 지방산 생합성 효소 (Enoyl-Acyl Carrier Protein Reductase, FabI)를 저해하는 새로운 항균물질의 스크리닝)

  • 곽진환
    • YAKHAK HOEJI
    • /
    • v.46 no.1
    • /
    • pp.24-29
    • /
    • 2002
  • Enoyl-Acyl Carrier Protein Reductase (Fabl) of bacteria is hem as an important target for new antibacterial drugs and plays a determinant role in completing cycles of elongation in type-H fatty acid synthase system. In this study, a fabI gene from Staphylococcus aureus 6538p cloned in pET-l4b vector and FabI protein was over-produced in Escherichaia coli BL2l (DE3). $NH_2$-terminal His-tagged FabI protein was purified by nickel-nitrilotriacetic acid (Ni-NTA) metalaffinity chromatography Purified 6xHis-tagged FabI showed a catalytic activity on tram - 2 - octenoyl - N -acethlcysteamine by utilizing NADPH as a cofactor. For the discovery of new FabI inhibitors from chemical libraries, a target-oriented screening system using a 96-well plate was developed. About 10,000 chemical libraries from Korea Chemical Bank wore tested in this screening system, and 26 chemicals (0.25%) among them showed an inhibitory activity against FabI enzyme. This result showed that a new screening system can be used for the discovery of new FabI inhibitors.

Changes of insulin like growth factor-I, IGF-I carrier protein in streptozotocin-induced diabetic rat (Streptozotocin에 의해 유도된 당뇨쥐의 IGF-I, IGFBPs 및 IGF-I carrier protein의 변화)

  • Heo, Young-ran;Jin, Song-jun;Kim, Jin-shang;Kang, Chang-won
    • Korean Journal of Veterinary Research
    • /
    • v.40 no.3
    • /
    • pp.489-496
    • /
    • 2000
  • This study was conducted to investigate the effects of streptozotocin-induced (STZ) diabetes on insulin-like growth factor-I (IGF-I), insulin-like growth factor binding proteins (IGFBPs), and IGF-I carrier proteins in serum, liver, and kidney. The levels of total and free IGF-I were measured by radioimmunoassay (RIA). The patterns of IGFBPs were determined by western ligand blotting (WLB) analysis. The profiles of IGF-I carrier proteins in serum were determined by column chromatography. The levels of total and free IGF-I in serum were lower in STZ-induced diabetic rat than normal rat (p<0.01). Similarly, the levels of total IGF-I in liver was lowered in STZ-induced diabetic rats. On the other hand, the levels of total IGF-I in kidney were increased in STZ-induced diabetic rats compared with normal rats (p<0.01). In serum and liver from STZ-induced diabetic rats, the amount of IGFBP-3 was decreased and the amount of IGFBP-2 was increased compared with normal rats. There was a not difference in amount of IGFBP-4 in serum between STZ-induced diabetic rats and normal rats. The serums of normal rats have higher 150kDa carrier proteins than in STZ-induced diabetic rats, whereas, most of 50kDa carrier proteins were found in STZ-induced diabetic rats. These results demonstrate that in STZ-induced diabetic rats, IGF-I/IGFBPs system that included functional bioactivity was changed in serum as well as tissues, and these changes may play an important role in pathogenesis of diabetes.

  • PDF

Succinylated Pullulan Acetate Microspheres for Protein Delivery

  • Woo, Young-Rong;Seo, Seog-Jin;Na, Kun
    • Journal of Pharmaceutical Investigation
    • /
    • v.41 no.6
    • /
    • pp.323-329
    • /
    • 2011
  • In order to develop new protein carrier replacing poly(DL-lactic acid-co-glycolic acid) (PLGA) microspheres, succinylated pullulan acetate (SPA) was investigated to fabricate a long term protein delivery carrier. SPA microspheres loaded with lysozyme (Lys) as a model protein drug were prepared by a water/oil/water (W/O/W) double emulsion method. An acidity test of SPA copolymers after hydrolysis was performed to estimate the change of protein stability during releasing proteins from the microspheres. There was no pH change of SPA copolymers, but pH of PLGA polymers after hydrolysis was significantly decreased to around pH 2, indicating that the long-term stability of proteins released from SPA microspheres can be guaranteed. Loading efficiency of proteins into SPA microspheres was three times higher than those into conventional PLGA microspheres, indication of inducing stronger charge interaction between proteins and succinyl groups in SPA microspheres. Although initial burst behaviors were monitored in Lys-loaded SPA microspheres due to relatively strong hydrophilic succinyl segments in SPA microspheres, initial burst issues would be circumvented if the ratio of charge density of succinyl moieties and hydrophobic acetate groups is harmonically controlled. Therefore, in this study, a new attempt of protein delivery system was made and functional SPA was successfully confirmed as a new protein carrier.

Natural Compounds as Inhibitors of Plasmodium Falciparum Enoyl-acyl Carrier Protein Reductase (PfENR): An In silico Study

  • Narayanaswamy, Radhakrishnan;Wai, Lam Kok;Ismail, Intan Safinar
    • Journal of Integrative Natural Science
    • /
    • v.10 no.1
    • /
    • pp.1-6
    • /
    • 2017
  • Demand for a new anti-malarial drug has been dramatically increasing in the recent years. Plasmodium falciparum enoyl-acyl carrier protein reductase (PfENR) plays a vital role in fatty acid elongation process, which now emerged as a new important target for the development of anti-microbial and anti-parasitic molecules. In the present study, 19 compounds namely alginic acid, atropine, chlorogenic acid, chrotacumine A & B, coenzyme $Q_1$, 4-coumaric acid, curcumin, ellagic acid, embelin, 5-O-methyl embelin, eugenyl glucoside, glabridin, hyoscyamine, nordihydroguaiaretic acid, rohitukine, scopolamine, tlatlancuayin and ursolic acid were evaluated on their docking behaviour on P. falciparum enoyl-acyl carrier protein reductase (PfENR) using Auto dock 4.2. The docking studies and binding free energy calculations exhibited that glabridin gave the highest binding energy (-8.07 kcal/mol) and 4-coumaric acid in contrast showed the least binding energy (-4.83 kcal/mol). All ligands except alginic acid, ellagic acid, hyoscyamine and glabridin interacted with Gln409 amino acid residue. Interestingly four ligands namely coenzyme $Q_1$, 4-coumaric acid, embelin and 5-O-methyl embelin interacted with Gln409 amino acid residue present in both chains (A & B) of PfENR protein. Thus, the results of this present study exhibited the potential of these 19 ligands as P. falciparum enoyl-acyl carrier protein reductase (PfENR) inhibitory agents and also as anti-malarial agents.

Studies on the Differentiation of Protein Patterns from Saccharomyces species by Isoelectric Focusing in Polyacrylamide Gels (Saccharomyces 종의 등전점 전기영동에 의한 단백질 분획상 차이에 관한 연구)

  • 김종진;한면수;최상규
    • Korean Journal of Microbiology
    • /
    • v.29 no.3
    • /
    • pp.179-183
    • /
    • 1991
  • The whole proteins from 10 different Saccharomyces species were separated by isoelectric focusing, which was carried out in pH gradient polyacrylamide gels with the carrier ampholytes of various pH ranges. About 25 protein bands were found in the gel using pH 3.0-10.0 carrier ampholytes. In gel using pH 4.0-7.0 carrier ampholytes, the protein band of pI 6.3 was found in Sacch. cerevisiae NCYC 478, ATCC 26787, Sacch. rosei and Sacch. uvarum, but it was absent in Sacch. cerevisiae ATCC 24903, ATCC 42949, ATCC 36029, Sacch. steineri var hara, Sacch. bayanus, and Sacch. diastaticus.

  • PDF

Effect of Testosterone Propionate and Estradiol -l7$\beta$ on the Biochemical Changes in the Fat Body and Haemolymph of the Bivoltine Silkworm Bombyx mori L.

  • Hugar, I.I.;Kaliwal, B.B.
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.3 no.2
    • /
    • pp.149-152
    • /
    • 2001
  • Effect of topical application with 10, 20 and 30 ${\mu}g$/ml testosterone propionate and estradiol -17${\beta}$ on the fourth and fifth instar bivoltine NB18 silkworm larvae Bombyx mori, on the glycogen and protein contents of the Fat body and trehalose and protein contents of the haemolymph has been studied. Glycogen content of the fat body was significantly decreased in both testosterone propionate and estradiol -17${\beta}$ treatment groups except in the group treated with 30 ${\mu}g$ testosterone propionate where the increase was not significant when compared with those of carrier controls. The increase/decrease in haemolymph trehalose content did not show any significant difference in all the treated groups. Protein content of the fat body significantly increased in 10 and 20 mg testosterone propionate and estradiol -l7${\beta}$ treated groups but in 30 mg treated groups the increase was not significant when compared with those of carrier controls. There was no significant change in the haemolymph protein content in all the testosterone propionate and estradiol -17${\beta}$ treated groups except in group treated with 10 ${\mu}g$ estradiol -17${\beta}$ where it showed a significant decrease when compared with that of carrier control.

  • PDF

Biochemical Characteristics of a Palmitoyl Acyl Carrier Protein Thioesterase Purified from Iris pseudoacorus

  • Kang, Han-Chul;Hwang, Young-Soo
    • BMB Reports
    • /
    • v.29 no.5
    • /
    • pp.436-441
    • /
    • 1996
  • The palmitoyl acyl carrier protein (ACP) specific thioesterase (EC 3.1.2.14) from Iris pseudoacorus was purified and characterized. The thioesterase which was very unstable in relatively high salt concentrations was eluted using a co-gradient of Triton X-100 and low concentration of KCl or Na-phosphate from Q-Sepharose, DEAE-Sepharose, and hydroxyapatite chromatography. SDS-PAGE analysis showed a single band with a molecular weight of 35,000. The native molecular weight of approximately 37,000 was estimated by Sephacryl S-200 chromatography, indicating that the enzyme is a monomer. The thioesterase activity was inhibited about 75% and 50% by N-ethylmaleimide (2 mM) and phenylmethylsulfonyl fluoride (2 mM). respectively. The N-ethylmaleimide-inactivation was protected by sodium palmitate but the inactivation with phenylmethylsulfonyl fluoride was not protected. Oxidation of thiols by 2 mM 5.5'-dithio-bis-(2-nitrobenzoic acid) resulted in 65% inactivation of the enzyme. These results suggest that a cysteinyl residue is essential to the catalytic reaction of the enzyme. The enzyme activity was increased by sodium citrate and also by $Cu^{2+}$

  • PDF

Lactic Acid Bacteria as Oral Antigen Protein Carriers (유산균을 이용한 겸구용 항원 단백질 수송능 연구)

  • Cho, Hee-Jeong;Choi, Han-Gon;Kim, Jung-Ae;Oh, Yu-Kyoung
    • Journal of Pharmaceutical Investigation
    • /
    • v.35 no.2
    • /
    • pp.75-80
    • /
    • 2005
  • A promising application of Lactococcus lactis is its use as live vehicles for production and delivery of heterologous proteins of vaccines and therapeutic substances. Because L. lactis has GRAS ('generally regarded as safe') status, we tested whether L. lactis could function as the carrier of the Ll protein of human papillomavirus (HPV) type 16. The RNA level expression of Ll gene was detected in L. Lactis. The Ll protein was expressed in L. lactis with Ll gene. The growth of strains L. lactis with an empty plasmid (pAMJ328) and L. lactis with Ll-encoding plasmid (pAMJ328-Ll) was slightly decreased in comparison with the growth of strains L. lactis (wild type). However, all the three strains of L. lactis maintained the ability to ferment sugars primarily into lactic acid, indicating that Ll protein did not affect the biochemical property of L. lactis. These results suggest that L. lactis, capable of carrying Ll protein, might be further developed as a biocompatible oral protein delivery system.