• 제목/요약/키워드: protein carbonyl

검색결과 121건 처리시간 0.026초

Effect of [6]-Gingerol, a Pungent Ingredient of Ginger, on Osteoblast Response to Extracellular Reducing Sugar

  • Kim, Young-Ho;Nguyen, Huu Thng;Ding, Yan;Park, Sang-Heock;Choi, Eun-Mi
    • Food Science and Biotechnology
    • /
    • 제16권5호
    • /
    • pp.807-811
    • /
    • 2007
  • Diabetes is marked by high glucose levels and is associated with decreased bone mass and increased fracture rates. To determine if [6]-gingerol could influence osteoblast dysfunction induced by 2-deoxy-D-ribose (dRib), osteoblastic MC3T3-E1 cells was treated with dRib and [6]-gingerol and markers of osteoblast function and oxidized protein were examined. [6]-Gingerol ($10^{-7}\;M$) significantly increased the growth of MC3T3-E1 cells in the presence of 30 mM dRib (p<0.05). [6]-Gingerol ($10^{-7}\;M$) caused a significant elevation of alkaline phosphatase (ALP) activity, collagen content, and osteocalcin secretion in the cells. We then examined the effect of [6]-gingerol on the production of osteoprotegerin and protein carbonyl in osteoblasts. Treatment with [6]-gingerol ($10^{-9}$ and $10^{-7}\;M$) increased osteoprotegerin secretion in osteoblastic cells. Moreover, [6]-gingerol ($10^{-9}$ and $10^{-7}\;M$) decreased protein carbonyl contents of osteoblastic MC3T3-E1 cells in the presence of 30 mM dRib. Taken together, these results demonstrate that [6]-gingerol inhibits dRib-induced damage and may be useful in the treatment of diabetes related bone diseases.

Biological functions of histidine-dipeptides and metabolic syndrome

  • Song, Byeng Chun;Joo, Nam-Seok;Aldini, Giancarlo;Yeum, Kyung-Jin
    • Nutrition Research and Practice
    • /
    • 제8권1호
    • /
    • pp.3-10
    • /
    • 2014
  • The rapid increase in the prevalence of metabolic syndrome, which is associated with a state of elevated systemic oxidative stress and inflammation, is expected to cause future increases in the prevalence of diabetes and cardiovascular diseases. Oxidation of polyunsaturated fatty acids and sugars produces reactive carbonyl species, which, due to their electrophilic nature, react with the nucleophilic sites of certain amino acids. This leads to formation of protein adducts such as advanced glycoxidation/lipoxidation end products (AGEs/ALEs), resulting in cellular dysfunction. Therefore, an effective reactive carbonyl species and AGEs/ALEs sequestering agent may be able to prevent such cellular dysfunction. There is accumulating evidence that histidine containing dipeptides such as carnosine (${\beta}$-alanyl-L-histidine) and anserine (${\beta}$-alanyl-methyl-L-histidine) detoxify cytotoxic reactive carbonyls by forming unreactive adducts and are able to reverse glycated protein. In this review, 1) reaction mechanism of oxidative stress and certain chronic diseases, 2) interrelation between oxidative stress and inflammation, 3) effective reactive carbonyl species and AGEs/ALEs sequestering actions of histidine-dipeptides and their metabolism, 4) effects of carnosinase encoding gene on the effectiveness of histidine-dipeptides, and 5) protective effects of histidine-dipeptides against progression of metabolic syndrome are discussed. Overall, this review highlights the potential beneficial effects of histidine-dipeptides against metabolic syndrome. Randomized controlled human studies may provide essential information regarding whether histidine-dipeptides attenuate metabolic syndrome in humans.

Dimethyl sulfoxide elevates hydrogen peroxide-mediated cell death in Saccharomyces cerevisiae by inhibiting the antioxidant function of methionine sulfoxide reductase A

  • Kwak, Geun-Hee;Choi, Seung-Hee;Kim, Hwa-Young
    • BMB Reports
    • /
    • 제43권9호
    • /
    • pp.622-628
    • /
    • 2010
  • Dimethyl sulfoxide (DMSO) can be reduced to dimethyl sulfide by MsrA, which stereospecifically catalyzes the reduction of methionine-S-sulfoxide to methionine. Our previous study showed that DMSO can competitively inhibit methionine sulfoxide reduction ability of yeast and mammalian MsrA in both in vitro and in vivo, and also act as a non-competitive inhibitor for mammalian MsrB2, specific for the reduction of methionine-R-sulfoxide, with lower inhibition effects. The present study investigated the effects of DMSO on the physiological antioxidant functions of methionine sulfoxide reductases. DMSO elevated hydrogen peroxide-mediated Saccharomyces cerevisiae cell death, whereas it protected human SK-Hep1 cells against oxidative stress. DMSO reduced the protein-carbonyl content in yeast cells in normal conditions, but markedly increased protein-carbonyl accumulation under oxidative stress. Using Msr deletion mutant yeast cells, we demonstrated the DMSO's selective inhibition of the antioxidant function of MsrA in S. cerevisiae, resulting in an increase in oxidative stress-induced cytotoxicity.

Effects of Microbial Transglutaminase on Physicochemical, Microbial and Sensorial Properties of Kefir Produced by Using Mixture Cow's and Soymilk

  • Temiz, Hasan;Dagyildiz, Kubra
    • 한국축산식품학회지
    • /
    • 제37권4호
    • /
    • pp.606-616
    • /
    • 2017
  • The objective of this research was to investigate the effects microbial transglutaminase (mTGs) on the physicochemical, microbial and sensory properties of kefir produced by using mix cow and soymilk. Kefir batches were prepared using 0, 0.5, 1 and 1.5 Units m-TGs for per g of milk protein. Adding m-TGs to milk caused an increase in the pH and viscosity and caused a decrease in titratable acidity and syneresis in the kefir samples. Total bacteria, lactobacilli and streptococci counts decreased, while yeast counts increased in all the samples during storage. Alcohols and acids compounds have increased in all the samples except in the control samples, while carbonyl compounds have decreased in all the samples during storage (1-30 d). The differences in the percentage of alcohols, carbonyl compounds and acids in total volatiles on the 1st and the 30th d of storage were observed at 8.47-23.52%, 6.94-25.46% and 59.64-63.69%, respectively. The consumer evaluation of the kefir samples showed that greater levels of acceptability were found for samples which had been added 1.5 U m-TGs for per g of milk protein.

Understanding Drug-Protein Interactions in Escherichia coli FabI and Various FabI Inhibitor Complexes

  • Lee, Han-Myoung;Singh, N. Jiten
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권1호
    • /
    • pp.162-168
    • /
    • 2011
  • Many ligands have been experimentally designed and tested for their activities as inhibitors against bacterial enoyl-ACP reductase (FabI), ENR. Here the binding energies of the reported ligands with the E. coli ENR-$NAD^+$ were calculated, analyzed and compared, and their molecular dynamics (MD) simulation study was performed. IDN, ZAM and AYM ligands were calculated to have larger binding energies than TCL and IDN has the largest binding energy among the considered ligands (TCL, S54, E26, ZAM, AYM and IDN). The contribution of residues to the ligand binding energy is larger in E. coli ENR-NAD+-IDN than in E. coli ENR-$NAD^+$-TCL, while the contribution of $NAD^+$ is smaller for IDN than for TCL. The large-size ligands having considerable interactions with residues and $NAD^+$ have many effective functional groups such as aromatic $\pi$ rings, acidic hydroxyl groups, and polarizable amide carbonyl groups in common. The cation-$\pi$ interactions have large binding energies, positively charged residues strongly interact with polarisable amide carbonyl group, and the acidic phenoxyl group has strong H-bond interactions. The residues which have strong interactions with the ligands in common are Y146, Y156, M159 and K163. This study of the reported inhibitor candidates is expected to assist the design of feasible ENR inhibitors.

Oxidative stress status and reproductive performance of sows during gestation and lactation under different thermal environments

  • Zhao, Yan;Kim, Sung Woo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제33권5호
    • /
    • pp.722-731
    • /
    • 2020
  • Objective: Two experiments were conducted using 28 healthy multiparous sows to evaluate the oxidative stress status and reproductive performance of sows during gestation and lactation under different thermal environments. Methods: Fourteen multiparous sows were used in Exp. 1 under a high thermal environment, and the other 14 multiparous sows were used in Exp. 2 under a moderate thermal environment. In both experiments, reproductive performances of sows were recorded. Plasma samples were collected on d 35, 60, 90, and 109 of gestation, and d 1 and 18 of lactation for malondialdehyde, protein carbonyls, 8-hydroxy-deoxyguanosine, immunoglobulin g (IgG), and IgM analysis. Results: For sows in Exp. 1, plasma malondialdehyde concentration on d 109 of gestation tended to be greater (p<0.05) than it on d 18 of lactation. Plasma concentration of protein carbonyl on d 109 of gestation was the greatest (p<0.05) compared with all the other days. Plasma concentrations of 8-hydroxy-deoxyguanosine on d 109 of gestation was greater (p<0.05) than d 18 of lactation in Exp. 1. For sows in Exp. 2, there was no difference of malondialdehyde and protein carbonyl concentration during gestation and lactation. In both Exp. 1 and 2, litter size and litter weight were found to be negatively correlated with oxidative stress indicators. Conclusion: Sows under a high thermal environment had increased oxidative stress during late gestation indicating that increased oxidative damage to lipid, protein, and DNA could be one of the contributing factors for reduced reproductive performance of sows in this environment. This study indicates the importance of providing a moderate thermal environment to gestating and lactating sows to minimize the increase of oxidative stress during late gestation which can impair reproductive outcomes.

Salsolinol, a catechol neurotoxin, induces oxidative modification of cytochrome c

  • Kang, Jung Hoon
    • BMB Reports
    • /
    • 제46권2호
    • /
    • pp.119-123
    • /
    • 2013
  • Methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline (salsolinol), an endogenous neurotoxin, is known to perform a role in the pathogenesis of Parkinson's disease (PD). In this study, we evaluated oxidative modification of cytochrome c occurring after incubation with salsolinol. When cytochrome c was incubated with salsolinol, protein aggregation increased in a dose-dependent manner. The formation of carbonyl compounds and the release of iron were obtained in salsolinol-treated cytochrome c. Salsolinol also led to the release of iron from cytochrome c. Reactive oxygen species (ROS) scavengers and iron specific chelator inhibited the salsolinol-mediated cytochrome c modification and carbonyl compound formation. It is suggested that oxidative damage of cytochrome c by salsolinol might induce the increase of iron content in cells, subsequently leading to the deleterious condition which was observed. This mechanism may, in part, provide an explanation for the deterioration of organs under neurodegenerative disorders such as PD.

카제인-알긴산 혼합물의 유화특성 (Emulsion Properties of Casein-Alginate Mixtures)

  • 황재관;최문정;김종태
    • 한국식품영양과학회지
    • /
    • 제26권6호
    • /
    • pp.1102-1108
    • /
    • 1997
  • Proteins and polysaccharides confer distinct functional properties in food systems. This research was attempted to improve emulsion properties of casein by protein-polysaccharide conjugation, in which alginates with various molecular weights were employed as polysaccharide sources. Casein-alginate mixtures were conjugated by the amino-carbonyl or Maillard reaction at 6$0^{\circ}C$ and 79% relative humidity. The resulting casein-alginate conjugates were tested for their emulsion activity and emulsion stabilizing properties. In general, the emulsion stability of casein-alginate mixture greatly increased due to the amino-carbonyl reaction between casein and alginates, whose magnitude depended on the molecular weight of alginate, weight ratio of casein to alginate and incubation time. It was also found that thermal stability and pH stability were markedly improved by the casein-alginate conjugation.

  • PDF

NMR Studies on the Structure of Human Annexin I

  • Lee, Yeon-Hee;Han, Hee-yong;Oh, Jee-Young;Na, Doe-Sun;Lee, Bong-Jin
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1997년도 춘계학술대회
    • /
    • pp.86-86
    • /
    • 1997
  • Human annexin I is a member of annexin family of calcium dependent phospholipid binding proteins, which have been implicated in various physiological roles including phospholipase A$_2$ (PLA$_2$) inhibition, membrane fusion and calcium channel activity. In this work, the structure of N-terminally truncated human annexin I (Δ-annexin I) and its interactions with Ca$\^$2+/, ATP and cAMP were studied at atomic level by using $^1$H, $\^$15/N, $\^$l3/C NMR (nuclear magnetic resonance) spectroscopy. The effect of Ca$\^$2+/ binding on the structure of Δ-annexin I was investigated, and compared with that of Mg$\^$2+/ binding. The addition of Ca$\^$2+/ to Δ-annexin I caused some changes in the high field and low field regions of $^1$H NMR spectra. Whereas, upon addition of Mg$\^$2+/ to Δ-annexin I, almost no change could be observed. Also we found that the binding ratio of ATP to Δ-annexin I is 1. Because Δ-annexin I is a large protein with 35 kDa molecular weight, site-specific (carbonyl-$\^$l3/C, amide-$\^$15/N) labeling technique was used to determine the interaction sites of Δ-annexin I with Ca$\^$2+/ and ATP. Assignments of all the histidinyl carbonyl carbon resonances have been completed by using Δ-annexin I along with its specific 1,2-subdomain. The carbonyl carbon resonances originating from His52 and His246 of Δ-annexin I were significantly affected by Ca$\^$2+/ binding, and some Tyr and Phe resonances were also affected. The carbonyl carbon resonances originating from His52 is significantly affected by ATP binding, therefore His52 seems to be involved in the ATP binding site of Δ-annexin I.

  • PDF

고지방식이로 유발한 흰쥐에서 쇠똥구리 추출물의 항산화 효과 및 혈당강하에 미치는 영향 (Anti-oxidative and Anti-hyperglycemia Effects of Dung Beetle Extracts on the High Fat Diet SD Rats)

  • 김하정;김반지;안미영
    • 생명과학회지
    • /
    • 제26권7호
    • /
    • pp.772-781
    • /
    • 2016
  • 쇠똥구리는 동물의 분을 이용하여 토질을 개선시켜 지구 생태계에 매우 중요한 역할을 담당하는 곤충이다. 이 연구에서 수컷 SD rat는 5군으로 분리되어 PBS, 쇠똥구리 에탄올 추출물, 쇠똥구리 아세톤 추출물, 귀뚜라미 아세톤 추출물, 양성대조군으로 새우기름 그룹으로 나누었다. 13주령 쥐에 고지방식이로 비만을 7주간 유도하고, 20주령부터 시험물질을 고지방 식이를 하면서 한 달간 투여하였다. 쇠똥구리 추출물의 투여는 체중과 복부지방과 부고환지방 중량의 감소로 이어졌다. 지질의 산화적 스트레스는 간에서 MDA를 측정하여 평가하였으나, 군간에 유 의성이 없었다. 단백질의 산화적 스트레스는 혈액에서 단백질 카르보닐 양으로 측정되었는데 쇠똥구리 에탄올 추출물과 쇠똥구리 아세톤 추출물에서 유의성있게 산화적 스트레스가 감소되었다. 반면에 간에서의 단백질 카르보닐 양은 군간에 유의성이 없었다. 당뇨 혈관내피세포를 효소면역분석법을 사용하여 세포부착단백질인 laminin 과 fibronectin 수준을 측정하였더니 쇠똥구리 추출물에서 유의성이 있었다. 사이토카인 IL-10, IL-1β, VEGF, eNOS를 측정하였는데 IL-10에서 쇠똥구리 에탄올 추출물과 쇠똥구리 아세톤 추출물에서 유의성이 있었다. 항산 화효소인 SOD, GSH-Px 활성은 군간에 유의성은 없었지만, 증가하는 경향이 있었고, CAT활성은 쇠똥구리 추출물에서 유의성있게 증가되었다. 지방조직 내의 포화지방산 비율이 감소하는 경향이 나타났으며, 불포화지방산과 다 가불포화지방산은 증가하였다. 쇠똥구리 추출물의 지방조직 감소 및 여러 지질 수치의 향상효과는 쇠똥구리 추출물을 기능성 곤충 소재로 이용할 수 있는 가능성을 제시한다.