• Title/Summary/Keyword: proteasome inhibitor

Search Result 58, Processing Time 0.021 seconds

Proteasome Inhibitors Affect Appressorium Formation and Pathogenicity of the Rice Blast Fungus, Magnaporthe oryzae

  • Wang, Yiming;Kim, Sang-Gon;Wu, Jingni;Yu, Seok;Kang, Kyu-Young;Kim, Sun-Tae
    • The Plant Pathology Journal
    • /
    • v.27 no.3
    • /
    • pp.225-231
    • /
    • 2011
  • Previously, we identified the 20S proteasome ${\alpha}$-subunit of Magnaporthe oryzae (M. oryzae) induced during appressorium formation, and detected an increase in multiple protein ubiquitination during the early appressorium formation process (Kim et al., 2004). In this study, we further attempted to determine whether the proteasome is involved in the appressorium formation of M. oryzae both in vitro and in planta, using proteasome inhibitors. A significant increase in 20S proteasome during fungal germination and appressorium formation was observed using Western blot analysis with 20S proteasome antibody, demonstrating that proteasome-mediated protein degradation was involved in appressorium formation. Pharmacological analysis using proteasome inhibitors, MG-132, proteasome inhibitor I (PI) and proteasome inhibitor II (PII) revealed that germination and appressorium formation were delayed for 4 to 6 h on rice leaf wax-coated plates. Similarly, the treatment of proteasome inhibitors with fungal conidia on the rice leaf surface delayed appressorium formation and host infection processes as well. Additionally, fungal pathogenicity was strongly reduced at 4 days' postfungal infection. These data indicated that the fungal 20S proteasome might be involved in the pathogenicity of M. oryzae by the suppression of germination and appressorium formation.

Protesome Inhibition Activity of Psoraleae Semen and Processed Psoraleae Semen (보골지 및 염초보골지의 proteasome 저해 작용)

  • Shim, Sang-Hee
    • Korean Journal of Pharmacognosy
    • /
    • v.39 no.1
    • /
    • pp.56-59
    • /
    • 2008
  • Ubiquitin-proteasome proteolytic system plays an important role in selective protein degradation and regulates cellular events including apoptosis. Cancer cells have been shown to be more sensitive to the proapoptotic effects of proteasome inhibition than normal cells. Thus, proteasome inhibitor can be potential anticancer agent. Since the MeOH extracts of psoraleae semen and processed psoraleae semen showed potent proteasome inhibition activity, the fractions of the extracts were evaluated on the activity to screen the proteasome inhibitors. The $CHCl_3$ fr. of the processed psoraleae semen showed the most potent activity, of which chemical investigation led to two coumarins, psoralen and isopsoralen. Their structures were determined by spectroscopic methods such as $^1H-NMR$ and EIMS spectra.

The enhancement of apoptosis by combined with proteasome inhibitor and DNA synthetic inhibitor in oral cancer

  • Lee, Young-Hee;Jung, Ji-Eun;Lee, Jung-Chang;Moon, Hyun-Ju;Lee, Nan-Hee;Jhee, Eun-Jung;Yi, Ho-Keun
    • International Journal of Oral Biology
    • /
    • v.33 no.1
    • /
    • pp.25-31
    • /
    • 2008
  • Inhibition of proteasome activity may reduce many types of cancer, so it's pathway is effective in cancer as well as in clinical fields. Here the author has carried out experiment targeting on the elevation of apoptosis in oral cancer cells by combination of proteasome inhibitor, lactacystin, and DNA replication inhibitor, etoposide. The growth of KB cells was measured by MTT methods and apoptosis was analyzed by DNA fragmentation and Hochest nucleus staining. The proteasome activity was analyzed by fluorescent tagged peptide and cellular protein expression was detected by Western hybridization. Though lactacystin and etoposide inhibited KB cell growth alone, but low combined doses inhibited cell growth more strongly and induced apoptosis. The proteasome activity was also seriously inhibited by the combination of both chemicals. Tumor suppressor proteins and apoptosis inducing proteins were highly increased under the combination of both chemicals. From above studies we can conclude that proteasome inhibitors may be used for the treatment of oral cancer and proteasome inhibitors with DNA replication inhibitors may be effective in clinical trials of oral cancer.

Isolation and Structure Determination of a Proteasome Inhibitory Metabolite from a Culture of Scytonema hofmanni

  • Shim, Sang-Hee;Chlipala, George;Orjala, Jimmy
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.10
    • /
    • pp.1655-1658
    • /
    • 2008
  • Cyanobacteria, blue-green algae, are a rich source of bioactive secondary metabolites with many potential applications. The ubiquitin-proteasome proteolytic system plays an important role in selective protein degradation and regulates cellular events including apoptosis. Cancer cells are more sensitive to the proapoptotic effects of proteasome inhibition than normal cells. Thus, proteasome inhibitors can be potential anticancer agents. Cyanobacteria have been shown to be a rich source of highly effective inhibitors of proteases. A proteasome inhibitor was screened from an extract of the culture of Scytonema hofmanni on the basis of its inhibitory activity, which led to the isolation of nostodione A with an $IC_{50}$ value of 50${\mu}M$. Its structure was determined by spectroscopic methods such as $^{1}H$-NMR and ESI-MS spectral analyses.

Effects of persimmon leaf extracts on proteasome activity in HepG2 human liver cancer cells (감잎 추출물이 HepG2 인간 간암 세포의 proteasome 활성에 미치는 영향)

  • Kim, Soyoung;Yoon, Hyungeun
    • Korean Journal of Food Science and Technology
    • /
    • v.51 no.4
    • /
    • pp.393-397
    • /
    • 2019
  • Proteasome inhibitors can promote apoptosis and cell cycle arrest in cancer cells by inhibition of nuclear factorkappaB ($NF-{\kappa}B$) activation. The purpose of this study was to investigate the effects of persimmon leaf extract (PSE) on proteasome activity in HepG2 human liver cancer cells. PSE treatment inhibited the proteasome activity and $NF-{\kappa}B$ activation in a dose-dependent manner in HepG2 human liver cancer cells (p<0.05). PSE treatment increased the population of cells in G2/M and sub-G1 phases. The results suggested that PSE is one of the candidate substances that may be developed into a proteasome inhibitor.

The proteasome inhibition enhances apoptosis by P53 expression and the dissipation of mitochondrial transmembrane potential in TRAIL-resistant lung cancer cells (Proteasome 억제에 의한 P53의 발현과 미토콘드리아 막 전압의 소실로 TRAIL에 저항하는 폐암세포의 사멸 강화)

  • Seol, Jae-Won;Park, Sang-Youel
    • Korean Journal of Veterinary Research
    • /
    • v.49 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • The ubiquitin-proteasome mediated protein degradation pathway plays an important role in regulating both cell proliferation and cell death. Proteasome inhibitors are well known to induce apoptosis in various human cancer cell lines. We investigated the effect of combined treatment with proteasome inhibitor and TRAIL, and a possible mechanism of the enhancing apoptosis by the both treatment, on TRAIL-resistant non-small cell lung cancer. A549 cells were exposed to the N-Acetyl-Leu-Leu-Norleu-al (ALLN) as a proteasome inhibitor and then treated with recombinant TRAIL protein. In A549 cells under proteasome inhibition conditions by pretreatment with ALLN, TRAIL treatment significantly decreased cell viability compared to that ALLN and TRAIL alone treatment. Also, the both treatment induced cell damage through DNA fragmentation and p53 expression. In addition, the combined treatment of both markedly increased caspase-8 activation, especially the exposure for 2 h, and Bax expression and induced the dissipation of mitochondrial transmembrane potential in A549 cells. Taken together, these findings showed that proteasome inhibition by ALLN enhanced TRAIL-induced apoptosis via DNA degradation by activated P53 and mitochondrial transmembrane potential loss by caspase-8 activation and bax expression. Therefore, our results suggest that proteasome inhibitor may be used a very effectively chemotherapeutic agent for the tumor treatment, especially TRAIL-resistant tumor cell.

Nerve growth factor-induced neurite outgrowth is potentiated by stabilization of TrkA receptors

  • Song, Eun-Joo;Yoo, Young-Sook
    • BMB Reports
    • /
    • v.44 no.3
    • /
    • pp.182-186
    • /
    • 2011
  • Exogenous stimuli such as nerve growth factor (NGF) exert their effects on neurite outgrowth via Trk neurotrophin receptors. TrkA receptors are known to be ubiquitinated via proteasome inhibition in the presence of NGF. However, the effect of proteasome inhibition on neurite outgrowth has not been studied extensively. To clarify these issues, we investigated signaling events in PC12 cells treated with NGF and the proteasome inhibitor MG132. We found that MG132 facilitated NGF-induced neurite outgrowth and potentiated the phosphorylation of the extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) and phosphatidylinositol-3-kinase (PI3K)/AKT pathways and TrkA receptors. MG132 stimulated internalization of surface TrkA receptor and stabilized intracellular TrkA receptor, and the $Ub^{K63}$ chain was found to be essential for stability. These results indicate that the ubiquitin-proteasome system potentiated neurite formation by regulating the stability of TrkA receptors.