Browse > Article
http://dx.doi.org/10.5423/PPJ.2011.27.3.225

Proteasome Inhibitors Affect Appressorium Formation and Pathogenicity of the Rice Blast Fungus, Magnaporthe oryzae  

Wang, Yiming (Division of Applied Life Science (BK21 program), Gyeongsang National University)
Kim, Sang-Gon (Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University)
Wu, Jingni (Division of Applied Life Science (BK21 program), Gyeongsang National University)
Yu, Seok (Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University)
Kang, Kyu-Young (Division of Applied Life Science (BK21 program), Gyeongsang National University)
Kim, Sun-Tae (Department of Plant Bioscience, Pusan National University)
Publication Information
The Plant Pathology Journal / v.27, no.3, 2011 , pp. 225-231 More about this Journal
Abstract
Previously, we identified the 20S proteasome ${\alpha}$-subunit of Magnaporthe oryzae (M. oryzae) induced during appressorium formation, and detected an increase in multiple protein ubiquitination during the early appressorium formation process (Kim et al., 2004). In this study, we further attempted to determine whether the proteasome is involved in the appressorium formation of M. oryzae both in vitro and in planta, using proteasome inhibitors. A significant increase in 20S proteasome during fungal germination and appressorium formation was observed using Western blot analysis with 20S proteasome antibody, demonstrating that proteasome-mediated protein degradation was involved in appressorium formation. Pharmacological analysis using proteasome inhibitors, MG-132, proteasome inhibitor I (PI) and proteasome inhibitor II (PII) revealed that germination and appressorium formation were delayed for 4 to 6 h on rice leaf wax-coated plates. Similarly, the treatment of proteasome inhibitors with fungal conidia on the rice leaf surface delayed appressorium formation and host infection processes as well. Additionally, fungal pathogenicity was strongly reduced at 4 days' postfungal infection. These data indicated that the fungal 20S proteasome might be involved in the pathogenicity of M. oryzae by the suppression of germination and appressorium formation.
Keywords
Appressorium formation; Magnaporthe oryzae; Pathogenicity; Proteasome inhibitor; 20S proteasome;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Xiao, J. Z., Watanabe, T., Kamakura, T., Ohshima, A. and Yamaguchi, I. 1994. Studies on cellular differentiation of Magnoporthe grisea physicochemical aspects of substratum surface in relation to appressorium formation. Physiol. Mol. Plant Pathol. 44:227-236.   DOI   ScienceOn
2 Yanagawa, Y., Hasezawa, S., Kumagai, F., Oka, M., Fujimuro, M., Naito, T., Makino, T., Yokosawa, H., Tanaka, K., Komamine, A., Hashimoto, J., Sato, T. and Nakagawa, H. 2002. Cell-cycle dependent dynamic change of 26S proteasome distribution in tobacco BY-2 cells. Plant Cell Physiol. 43:604-613.   DOI   ScienceOn
3 Yim, K. O. and Bradford, K. J. 1998. Callose deposition is responsible for apoplastic semipermeability of the endosperm envelope of muskmelon seeds. Plant Physiol. 118:83-90.   DOI   ScienceOn
4 Lee, Y. H. and Dean, R. A. 1994. Hydrohobicity of contact surface induces appressorium formation in Magnaporthe grisea. FEMS Microbiol. Lett. 115:71-75.   DOI
5 Lowe, J., Stock, D., Jap, B., Zwickl, P., Baumeister, W. and Huber, R. 1995. Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 A resolution. Science 268:533-539.   DOI
6 Marian, O., Christopher, C., Eleuteri, A. M., Kohanski, R., Kam, C. M. and Powers, J. C. 1997. Reactions of [14C]-3,4-Dichloroisocoumarin with subunits of pituitary and Spleen Multicatalytic Proteinase Complexes (proteasome). Biochemitry. 36: 13946-13953.   DOI   ScienceOn
7 Nandi, D., Tahiliani, P., Kumar, A. and Chandu, D. 2006. The ubiquitin-proteasome system. J. Biosci. 31:137-55.   DOI
8 Nguyen, L. N., Bormann, J., Le, G. T., Stärkel, C., Olsson, S., Nosanchuk, J. D., Giese, H. and Schäfer, W. 2011. Autophagy- related lipase FgATG15 of Fusarium graminearum is important for lipid turnover and plant infection. Fungal Genet. Biol. 48:217-224.   DOI   ScienceOn
9 Rock, L. and Goldberg, A. L. 1999. Degradation of cell proteins and the generation of MHC class 1-presented peptides. Annu. Rev. Immunol. 17:739-779.   DOI   ScienceOn
10 Shah, S. A., Potter, M. W. and Callery, M. P. 2001. Ubiquitin proteasome pathway: implications and advances in cancer therapy. Surg. Oncol. 10:43-52.   DOI   ScienceOn
11 Skaar, J. R. and Pagano, M. 2009. Control of cell growth by the SCF and APC/C ubiquitin ligases. Curr. Opin. Cell Biol. 21:816-824.   DOI   ScienceOn
12 Oku, M. and Sakai, Y. 2010. Peroxisomes as dynamic organelles: autophagic degradation. FEBS J. 277:3289-3294.   DOI   ScienceOn
13 Veneault-Fourrey, C., Barooah, M., Egan, M., Wakley, G. and Talbot, N. J. 2006. Autophagic fungal cell death is necessary for infection by the rice blast fungus. Science 312:580-583.   DOI   ScienceOn
14 Irie, T., Matsumura, H., Terauchi, R. and Saitoh, H. 2003. Serial Analysis of Gene Expression (SAGE) of Magnaporthe grisea: genes involved in appressorium formation. Mol. Genet. Genomics 270:181-189.   DOI
15 Jelitto, T. C., Page, H. A. and Read, N. D. 1994. Role of external signals in regulating the pre-penetration phase of infection by the rice blast fungus, Magnaporthe grisea. Annu. Rev. Microbiol. 50:491-512.
16 Park, J. Y., Jin, J., Lee, Y. W., Kang, S. and Lee, Y. H. 2009. Rice blast fungus (Magnaporthe oryzae) infects Arabidopsis via a mechanism distinct from that required for the infection of rice. Plant Physiol. 149:474-486.   DOI   ScienceOn
17 Kawahara, H. and Yokosawa, H. 1992. Cell cycle-dependent change of proteasome distribution during embryonic development of the ascidian Halocynthia roretzi. Dev. Biol. 151:27-33.   DOI   ScienceOn
18 Kershaw, M. J. and Talbot, N. J. 2009. Genome-wide functional analysis reveals that infection-associated fungal autophagy is necessary for rice blast disease. Proc. Natl. Acad. Sci. U. S. A. 106:15967-15972.   DOI   ScienceOn
19 Kim, S. T., Yu, S., Kim, S. G., Kim, H. J., Kang, S. Y., Hwang, D. H., Jang, Y. S. and Kang, K. Y. 2004. Proteome analysis of rice blast fungus (Magnaporthe grisea) proteome during appressorium formation. Proteomics 4:3579-3587.   DOI   ScienceOn
20 King, R. W., Deshaies, R. J., Peters, J. M. and Kirschner, M. W. 1996. How proteolysis drives the cell cycle. Science 274: 1652-1659.   DOI   ScienceOn
21 Clague, M. J. and Urbe, S. 2010. Ubiquitin: same molecule, different degradation pathways. Cell 143:682-685.   DOI   ScienceOn
22 Kurepa, J., Wang, S., Li, Y. and Smalle, J. 2009. Proteasome regulation, plant growth and stress tolerance. Plant Signal Behav. 4:924-927.   DOI
23 Lee, Y. H. and Dean, R. A. 1993. cAMP regulates infection structure formation in the plant pathogenic fungus Magnaporthe grisea. Plant Cell 5:693-700.   DOI   ScienceOn
24 Baumeister, W., Walz, J., Zuhl, F. and Seemuller, E. 1998. The proteasome: paradigm of self compartmentalizing protease. Cell 92:367-380.   DOI   ScienceOn
25 Dahlmann, B., Kopp, F., Kuehn, L., Niedel, B., Pfeifer, G., Hegerl, R. and Baumeister, W. 1989. The multicatalytic proteinase (prosome) is ubiquitous from eukaryotes to archaebacteria. FEBS Lett. 251:125-131.   DOI   ScienceOn
26 Dick, S. 1979. Growth of Erysiphe germinis on artificial membranes. Physiol. Plant Pathol. 15:219-221.   DOI
27 Dickinson, S. 1977. Studies in the physiology of obligate parasitism X. induction of responses to a thigmotropic stimulus. Phytopathol. Z. 89:97-115.   DOI
28 Genin, E., Reboud-Ravaux, M. and Vidal, J. 2010. Proteasome inhibitors: recent advances and new perspectives in medicinal chemistry. Curr. Top. Med. Chem. 10:232-256.   DOI
29 George, N. D. and Clive, A. S. 1999. The proteasome, a novel protease regulated by multiple mechanisms. J. Biol. Chem. 27:22123-22126.
30 Gilbert, R. D., Johnson, A. M. and Dean, R. A. 1996. Chemical signals responsible for appressorium formation in the rice blast fungus. Physiol. Mol. Plant Pathol. 48:335-346.   DOI   ScienceOn
31 Howard, R. J., Ferrari, M. A., Roach, D. H. and Money, N. P. 1991. Penetration of hard substrates by a fungus employing enormous turgor pressures. Proc. Natl. Acad. Sci. U. S. A. 88:11281-11284.   DOI   ScienceOn
32 Hoch, H. C. and Staples, R. C. 1987. Structural and chemical changes among the rust fungi during appressorium development. Annu. Rev. Phytopathol. 25:231-247.   DOI   ScienceOn