• 제목/요약/키워드: protease inhibition

검색결과 218건 처리시간 0.027초

Stability Enhancement of hGM-CSF in Transgenic Nicotiana tabacum Suspension Cell Cultures

  • Lee, Sang-Yoon;Cho, Jong-Moon;Kim, Dong-Il
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제8권3호
    • /
    • pp.187-191
    • /
    • 2003
  • Proteolytic enzymes existing in plant cell cultured media are the major reason for the loss of secreted human granulocyte-macrophage colony-stimulating factor (hGM-CSF). The addition of pepstatin, aprotinin and PMSF relatively decreased the proteolytic degradation of hGM-CSF in a conditioned medium, but sufficient prevention against the proteolytic activity could not be obtained with chemical protease inhibitors. Gelatin, as a competitive substrate for protease, showed a stabilizing effect in a conditioned medium. Compared to the initial hGM-CSF concentration in a conditioned medium. with 10 g/L of gelatin, 68% of the hGM-CSF remained after 5 days. In a cell culture experiment, 5 g/L of gelatin significantly stimulated the hGM-CSF production and accumulation in culture media, with no growth inhibition. compared to the controls (4.72 $\mu\textrm{g}$/L), the extracellular hGM-CSF level could be increased to 39.78 $\mu\textrm{g}$/L with the addition of 5 g/L of gelatin.

Kinetic Studies of Alkaline Protease from Bacillus licheniformis NCIM-2042

  • Bhunia, Biswanath;Basak, Bikram;Bhattacharya, Pinaki;Dey, Apurba
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권12호
    • /
    • pp.1758-1766
    • /
    • 2012
  • An extensive investigation was carried out to describe the kinetics of cell growth, substrate consumption, and product formation in the batch fermentation using starch as substrate. Evaluation of intrinsic kinetic parameters was carried out using a best-fit unstructured model. A nonlinear regression technique was applied for computational purpose. The Andrew's model showed a comparatively better $R^2$ value among all tested models. The values of specific growth rate (${\mu}_{max}$), saturation constant ($K_S$), inhibition constant ($K_I$), and $Y_{X/S}$ were found to be 0.109 $h^{-1}$, 11.1 g/l, 0.012 g/l, and 1.003, respectively. The Leudeking-Piret model was used to study the product formation kinetics and the process was found to be growth-associated. The growth-associated constant (${\alpha}$) for protease production was sensitive to substrate concentration. Its value was fairly constant up to a substrate concentration of 30.8 g/l, and then decreased.

Could Natural Products Confer Inhibition of SARS-CoV-2 Main Protease? In-silico Drug Discovery

  • Mohamed-Elamir F Hegazy
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2020년도 추계국제학술대회
    • /
    • pp.14-14
    • /
    • 2020
  • In December 2019, the COVID-19 epidemic was discovered in Wuhan, China, and since has disseminated around the world impacting human health for millions. Herein, in-silico drug discovery approaches were utilized to identify potential candidates as Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) main protease (Mpro) inhibitors. We investigated several databases including natural and natural-like products (>100,000 molecules), DrugBank database (10,036 drugs), major metabolites isolated from daily used spices (32 molecules), and current clinical drug candidates for the treatment of COVID-19 (18 drugs). All tested compounds were prepared and screened using molecular docking techniques. Based on the calculated docking scores, the top ones from each project under investigation were selected and subjected to molecular dynamics (MD) simulations followed by molecular mechanics-generalized Born surface area (MM-GBSA) binding energy calculations. Combined long MD simulations and MM-GBSA calculations revealed the potent compounds with prospective binding affinities against Mpro. Structural and energetic analyses over the simulated time demonstrated the high stabilities of the selected compounds. Our results showed that 4-bis([1,3]dioxolo)pyran-5-carboxamide derivatives (natural and natural-like products database), DB02388 and Cobicistat (DB09065) (DrugBank database), salvianolic acid A (spices secondary metabolites) and TMC-310911 (clinical-trial drugs database) exhibited high binding affinities with SARS-CoV-2 Mpro. In conclusion, these compounds are up-and-coming anti-COVID-19 drug candidates that warrant further detailed in vitro and in vivo experimental estimations.

  • PDF

제초제(除草劑)가 토양환경중(土壤環境中) 효소활성(酵素活性)에 미치는 영향(影響) (Effects of Herbicides on Enzyme Activities in Soil Environment)

  • 김장억;홍종욱
    • Applied Biological Chemistry
    • /
    • 제31권1호
    • /
    • pp.79-85
    • /
    • 1988
  • 제초제(除草劑)가 토양환경내(土壤環境內)의 생화학적(生化學的) 전환과정(轉換過程)에 미치는 영향(影響)을 규명(糾明)하기 위해서 화학구조(化學構造)가 다른 여러 종류의 제초제(除草劑)를 질소질비료(室素質肥料)인 요소(尿素)와 함께 토양(土壤)에 처리(處理)하였을때 토양효소(土壞酵素)의 활성(活性)에 미치는 영향(影響)과 농약(農藥)의 잔류량(殘留量)의 변화(變化)를 조사(調査)한 결과(結果)는 다음과 같았다. 제초제(除草劑)의 처리(處理)로 Urease의 활성(活性)에는 Urea계(系), dinoseb, propanil, diphenylether계(系), 산amide계(系)의 순(順)으로 저해율(沮害率)이 높았다. L-Glutaminase 및 protease의 활성(活性)에는 dinoseb, urea계(系), diphenylether계(系), 산amide계(系)의 순(順)으로 저해율(沮害率)이 높았으며 phosphatase는 dinoseb, diphenylether계(系), urea계(系), 산amide계(系)의 순(順)으로 저해율(沮書率)이 높았다. 대체적으로 제초제(除草劑)의 처리(處理)로 처리초기(處理初期)에는 저해(沮害)를 보이다가 28일(日) 이후(以後)에는 거의 영향(影響)이 없거나 활성(活性)을 약간 증가(增加)시켰다. 요소(尿素)의 시용(施用)으로 인(因)해 제초제(除草劑)의 분해(分解)는 무시용구(無施用區)에 비해서 약간 촉진(促進)되었다.

  • PDF

Characteristics of Trypsin-like Protease and Metalloprotease Associated with Mycelium Differentiation of Streptomyces albidoflavus SMF301

  • Kang, Sung-Gyun;Kim, In-Seop;Jeong, Byung-Cheol;Ryu, Jae-Gon;Rho, Yong-Taik;Lee, Kye-Joon
    • Journal of Microbiology
    • /
    • 제33권4호
    • /
    • pp.307-314
    • /
    • 1995
  • Trypsin like protease (TLP) and metalloprotease (MTP) were induced in associated with the mycelium differentiation in Streptomyces albidoflavus SMF301. TLP and MTP were purified and characterized from the culture. The molecular mass of TLP and MTP were estimated to be 32 kDa and 18 kDa, respectively. The molecular mass of TLP and MTP were estimated to be 32 kDa and 18 kDa, respectively. The optimum pH and temperature of TLP were 10 and 40.$^{\circ}C$ Those of MTP were 8 and 55 $^{\circ}C$ TLP was stable at alkaline pH (6-9) and unstable above 45.$^{\circ}C$and MTP was stable at alkaline pH and unstable above 80.$^{\circ}C$ Km and Vmax values with benzoyl-arginyl p-nitroanilide of TLP were 139 $\mu$M, and 10 nmole of nitroanilide released per min per$\mu\textrm{g}$ protein, respectively. Km, and Vmax values with a synthetic substrate, leucine p-nitroanilide, or MTP were 58.9 $\mu$M, 3.47 nmol of nitroanilide released per min per$\mu\textrm{g}$protein, respectively. TLP was inhibited competitively by leupeptin; the inhibition constant was 0.0031 $\mu$M. MTP was inhibited by EDTA, phenonthroline and bestatin.

  • PDF

Comparison of Functional Properties of Blood Plasma Collected from Black Goat and Hanwoo Cattle

  • Shine Htet Aung;Edirisinghe Dewage Nalaka Sandun Abeyrathne;Mahabbat Ali;Dong Uk Ahn;Young-Sun Choi;Ki-Chang Nam
    • 한국축산식품학회지
    • /
    • 제43권1호
    • /
    • pp.46-60
    • /
    • 2023
  • Slaughterhouse blood is a by-product of animal slaughter that can be a good source of animal protein. This research purposed to examine the functional qualities of the blood plasma from Hanwoo cattle, black goat, and their hydrolysates. Part of the plasma was hydrolyzed with proteolytic enzymes (Bacillus protease, papain, thermolysin, elastase, and α-chymotrypsin) to yield bioactive peptides under optimum conditions. The levels of hydrolysates were evaluated by 15% sodium dodecyl sulfate polyacrylamide gel electrophoresis. The antioxidant, metal-chelating, and angiotensin I-converting enzyme (ACE) inhibitory properties of intact blood plasma and selected hydrolysates were investigated. Accordingly, two plasma hydrolysates by protease (pH 6.5/55℃/3 h) and thermolysin (pH 7.5/37℃/3-6 h) were selected for analysis of their functional properties. In the oil model system, only goat blood plasma had lower levels of thiobarbituric acid reactive substances than the control. The diphenyl picrylhydrazyl radical scavenging activity was higher in cattle and goat plasma than in proteolytic hydrolysates. Ironchelating activities increased after proteolytic degradation except for protease-treated cattle blood. Copper-chelating activity was excellent in all test samples except for the original bovine plasma. As for ACE inhibition, only non-hydrolyzed goat plasma and its hydrolysates by thermolysin showed ACE inhibitory activity (9.86±5.03% and 21.77±3.74%). In conclusion, goat plasma without hydrolyzation and its hydrolysates can be a good source of bioactive compounds with functional characteristics, whereas cattle plasma has a relatively low value. Further studies on the molecular structure of these compounds are needed with more suitable enzyme combinations.

3D-QSAR of Angiotensin-Converting Enzyme Inhibitors: Functional Group Interaction Energy Descriptors for Quantitative Structure-Activity Relationships Study of ACE Inhibitors

  • Kim, Sang-Uk;Chi, Myung-Whan;Yoon, Chang-No;Sung, Ha-Chin
    • BMB Reports
    • /
    • 제31권5호
    • /
    • pp.459-467
    • /
    • 1998
  • A new set of functional group interaction energy descriptors relevant to the ACE (Angiotensin-Converting Enzyme) inhibitory peptide, QSAR (Quantitative Structure Activity Relationships), is presented. The functional group interaction energies approximate the charged interactions and distances between functional groups in molecules. The effective energies of the computationally derived geometries are useful parameters for deriving 3D-QSAR models, especially in the absence of experimentally known active site conformation. ACE is a regulatory zinc protease in the renin-angiotensin system. Therapeutic inhibition of this enzyme has proven to be a very effective treatment for the management of hypertension. The non bond interaction energy values among functional groups of six-feature of ACE inhibitory peptides were used as descriptor terms and analyzed for multivariate correlation with ACE inhibition activity. The functional group interaction energy descriptors used in the regression analysis were obtained by a series of inhibitor structures derived from molecular mechanics and semi-empirical calculations. The descriptors calculated using electrostatic and steric fields from the precisely defined functional group were sufficient to explain the biological activity of inhibitor. Application of the descriptors to the inhibition of ACE indicates that the derived QSAR has good predicting ability and provides insight into the mechanism of enzyme inhibition. The method, functional group interaction energy analysis, is expected to be applicable to predict enzyme inhibitory activity of the rationally designed inhibitors.

  • PDF

Benzalkonium Chloride가 돈슬러리의 바이오가스 생성에 미치는 영향 (Effect of Benzalkonium Chloride on Biogas Potential of Pig Slurry)

  • 박혜림;최홍림
    • 유기물자원화
    • /
    • 제19권3호
    • /
    • pp.63-72
    • /
    • 2011
  • 본 연구에서는 benzalkonium chloride 처리에 따라 바이오가스 생산이 억제되는 정도를 평가하였다. 바이오가스 생산 억제 수준은 10 ppm, 40 ppm, 80ppm의 benzalkonium chloride가 처리되었을 때 각각 10%, 30-40%, 70% 이상이었다. Benzalkonium chloride의 처리에 따라 저해되는 효소를 알아내기 위하여 효소 활성을 분석하였으며 산성/알칼리 포스파타아제, 프로테아제는 메탄 생산량과 음의 상관관계를 나타내었다. ${\alpha}$-글루코시다아제는 실험기간 동안 메탄 생성량과 상대적으로 낮은 음의 상관성을 보였으며(p<0.01, r=-426), 다른 효소와의 상관성도 상대적으로 낮았다. 메탄생성률(ml/day)은 benzalkonium chloride및 산성 포스파타아제와 유의한 상관성을 나타내었다. Benzalkonium chloride가 대장균에 미치는 영향을 원판확산법을 통하여 분석하였다. Benzalkonium chloride의 농도가 높을수록 세균증식 억제대가 확장되었으며, 이를 통하여 benzalkonium chloride가 초산생성균의 증식을 억제함으로써 혐기소화조에 영향을 미칠 수 있다는 것을 확인하였다.

효소가수분해에 의한 유청단백질의 항원성 저하 (Reduction of the Antigenicity of Whey Protein by Enzymatic Hydrolysis)

  • 하월규;전석락;김정완;이수원;이재영;손동화
    • 한국식품과학회지
    • /
    • 제26권1호
    • /
    • pp.74-80
    • /
    • 1994
  • 효소에 의한 단백질분해가 유청단백질의 항원성의 저하에 미치는 영향을 조사하기 위한 기본연구로서, 유청단백질의 가수분해특성을 조사하고 competitive inhibition enzyme-linked immunosorbent assay(cELISA)에 의한 항원성의 변화를 검토하였다. 유청단백질의 가수분해는 chymotrypsin, trypsin, pancreatin, 그리고 Aspergillus oryzae유래의 protease를 각기 4시간 동안 행하였다. TNBS(trinitrobenzensulfonic acid)법에 의하여 측정한 유청단백질의 가수분해도(DH)는 chymotrypsin이나 trypsin을 처리한 경우$(5.05{\sim}11.47)$보다 Aspergillus oryzae유래의 protease 및 pancreatin을 처리한 경우$(15.67{\sim}20.20)$가 훨씬 높게 나타났으며, 각 효소의 처리전에 열처리($75^{\circ}C$, 20분)나 pepsin의 처리를 한 경우에 대체로 약간 높게 나타났다. High performance size exclusion chromatography(HPSEC)에 의하여 분자량분포를 조사한 결과, 가수분해물에 따라 10kDa 이상의 polypeptide가 $12{\sim}36%$ 정도 존재하였고, 평균분자량은 $4,252{\sim}9,132$ dalton, 평균길이는 아미노산 $38{\sim}83$개로 나타났다. 또한 쓴맛은 형성되지 않았다. SDS-PAGE의 결과 처리구에 따라 분자량 14.2kDa 이상의 polypeptide가 일부 존재하였으나 native 유청단백질은 대부분 가수분해에 의하여 제거되었음을 확인하였다. 토끼 항WPI항혈청에 의한 cELISA로 검토한 유청단백질 가수분해물의 monovalent 항원성은 효소처리에 의하여 약 $10^{-1.7}{\sim}10^{-4.9}$배 또는 그 이하로 저하되었으며 대체로 가수분해가 많이 일어난 분해물은 그 항원성이 낮아지는 것으로 나타났다. 또한 각 처리구내에서는 열 및 pepsin의 전처리후 다음 효소 분해한 유청단백질 가수분해물(CDP, TDP, PDP, ODP)의 경우 그 항원성이 가장 낮았다. 그중에서도 pancreatin 가수분해물(PDP)의 경우 항원성이 거의 상실된 것으로 나타났다.

  • PDF

Cytosine Arabinoside 유도된 PC12 세포의 사망 경로 (Cytosine Arabinoside-Induced PC12 Cell Death Pathway)

  • 양보기;양병환;채영규
    • 생물정신의학
    • /
    • 제5권2호
    • /
    • pp.219-226
    • /
    • 1998
  • Cytosine arabinoside(AraC) inhibits DNA synthesis and ${\beta}$-DNA polymerase, an enzyme involved in DNA repair. This, a potent antimitotic agent, is clinically used as an anticancer drug with side effect of severe neurotoxicity. Earlier reports suggested that inhibition of neuronal survival by AraC in sympathetic neuron may be due to the inhibition of a 2'-deoxycytidine-dependent process that is independent of DNA synthesis or repair and AraC induced a signal that is triggers a cascade of new mRNA and protein synthesis, leading to apoptotic cell death in cultured cerebellar granule cells. The present study would suggest whether caspase family(ICE/CED-3-like protease) involved in AraC-induced apoptosis pathway of PC12 cells. It was observed that treatment of PC12 cells with AraC led to decrease of viability by MTT assay and morphology changes, which did not suggest that AraC induced apoptosis in PC12 cells. The mRNA of caspase-1/caspase-3 were expressed in PC12 cells constitutively, and AraC did not activate caspase family. These results suggest that caspase-1/caspase-3 may not be required for AraC-induced cell death pathway in PC12 cells.

  • PDF