• Title/Summary/Keyword: propylene carbonate

Search Result 97, Processing Time 0.022 seconds

Study on the Process Condition for Producing Propylene Carbonate in Commercial (상업적으로 프로필렌카보네이트를 제조하기 위한 공정 조건 연구)

  • Jin, Sang Hyun;Lee, Hak Beum;Back, Jea Beom
    • Journal of Energy Engineering
    • /
    • v.29 no.1
    • /
    • pp.58-62
    • /
    • 2020
  • Among the exhaust gas, Carbon dioxide which is a causative factor in greenhouse effect. We study for synthesis of propylene carbonate with carbon dioxide which is captured and utilized in commercially valuable. The Experiment was proceeded as pilot scale with using homogeneous organic catalyst which is able to produce propylene carbonate in commercial and reaction conditions. Optimization condition for concentration of catalyst and reaction temperature, pressure was studied. We confirm that this process is eco-friendly method and commercial application due to the mild condition and also catalyst has a competitive price, reusability.

Synthesis and Characterization of Waterborne Polyurethane for Water Resistance (내수성 향상을 위한 수성 폴리우레탄의 합성 및 특성)

  • Choi, Min Ji;Jeong, Boo Young;Cheon, Jung Mi;Park, Kuenbyeol;Chun, Jae Hwan
    • Journal of Adhesion and Interface
    • /
    • v.18 no.1
    • /
    • pp.8-12
    • /
    • 2017
  • In this study, waterborne polyurethane was synthesized with polyester polyol, poly(propylene carbonate) (PPC), 4,4-dicyclohexylmethane diisocyanate ($H_{12}MDI$) and dimethylol propionic acid (DMPA) to improve the water resistance. The properties of the synthesized waterborne polyurethane using poly(propylene carbonate) (WPUP) was evaluated through FT-IR, GPC, DSC and UTM. The mechanical properties were increased with the increase in the amount of PPC. When the ratio of polyester polyol to poly(propylene carbonate) is 9:1, the highest water resistance was showed.

Isentropic Compressibility for Binary Mixtures of Propylene Carbonate with Benzene and Substituted Benzene

  • Wankhede, D.S.
    • Journal of the Korean Chemical Society
    • /
    • v.56 no.1
    • /
    • pp.7-13
    • /
    • 2012
  • Ultrasonic velocities (u) for binary mixtures of propylene carbonate (PC) (1) with benzene and substituted benzenes (2) viz. benzene, ethylbenzene, o-xylene and p-xylene have been measured at 288.15-308.15 K over the entire range of composition. The experimental values of ultrasonic velocities (u) have been utilized to calculate isentropic compressibility ($K_s$), intermolecular free length ($L_f$), acoustic impedance (Z).

Characterization of Surface Films Formed Prior to Bulk Reduction of Lithium in Rigorously Dried Propylene Carbonate Solutions

  • Chang, Seok Gyun;Lee, Hyo Jung;Gang, Heon;Park, Su Mun
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.5
    • /
    • pp.481-487
    • /
    • 2001
  • Surface films formed prior to bulk reduction of lithium have been studied at gold, platinum, and copper electrodes in rigorously dried propylene carbonate solutions using electrochemical quartz crystal microbalance (EQCM) and secondary ion mass spectrometry experiments. The results indicate that the passive film formation takes place at a potential as positive as about 2.0 V vs. Li/Li+ , and the passive film thus formed in this potential region is thicker than a monolayer. Quantitative analysis of the EQCM results indicates that electrogenerated lithium reacts with solvent molecules to produce a passive film consisting of lithium carbonate and other compounds of larger molecular weights. The presence of lithium carbonate is verified by SIMS, whereas the lithium compounds of low molecular weights, including lithium hydroxide and oxide, are not detected. Further lithium reduction takes place underneath the passive film at potentials lower than 1.2 V with a voltammetric current peak at about 0.6 V.

Synthesis of Biodegradable Polymers with Carbon Dioixde (이산화탄소를 이용한 생분해성 고분자의 합성)

  • Shin Sang Chul;Shin Jae Shik;Lee Yoon Rae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.5 no.6
    • /
    • pp.521-525
    • /
    • 2004
  • Biodegradation of poly(ethylene carbonate) (PEC) and their terpolymers has been investigated in vitro. PEC has been synthesized with ethylene oxide (EO) and carbon dioxide, which is one of the greenhouse gases using Zinc glutarate has been used as catalyst Carbonate terpolymers have been prepared by the use of EO, cyclohexene oxide(CHO), and carbon dioxide. High biodegradability of PEC and terpolymers with EO. has been observed. Very low biodegradation of poly(propylene carbonate) (PPC) and poly(cyclohexene carbonate) (PCHC) has been shown. The weight loss, FT-IR and SEM have been employed to characterize biodegradability.

  • PDF

Propylene Carbonate Synthesis using Supercritical $CO_2$ and Ionic Liquid (초임계 이산화탄소와 이온성 액체를 이용한 Propylene Carbonate 합성)

  • Kim, Byeong-Heon;Jang, Sung-Hyeon;Min, Se-Ryeon;Kim, Hwa-Yong
    • Clean Technology
    • /
    • v.17 no.1
    • /
    • pp.37-40
    • /
    • 2011
  • Some ionic liquids are suitable for catalysts and solvents which are applicable to $CO_2$ fixation reaction converting $CO_2$ to carbonate. Using the ionic liquids, the synthesis process will become greener and simpler because of easy catalyst recycling and unnecessary use of volatile and harmful organic solvents. In this work, the synthesis of propylene carbonate from propylene oxide using carbon dioxide and ionic liquids were measured at high pressures up to ~140 bar and at temperatures between $60^{\circ}C$ and $80^{\circ}C$. As a results, we found the optimum condition and obtained the maximum yield under that condition.

Synthesis of Hydroxy-terminated Poly(propylene carbonate) (Hydroxy-terminated Poly(propylene carbonate)의 합성)

  • Jung, S.M.;Moon, J.Y.;Park, D.W.;Park, S.W.;Lee, J.K.
    • Applied Chemistry for Engineering
    • /
    • v.9 no.2
    • /
    • pp.273-277
    • /
    • 1998
  • The synthesis of hydroxy-terminated poly(propylene carbonate)(HTPPC) was performed by the reaction of propylene carbonate(PC) with alcohol initiator using metal alkoxides, crown ethers and quaternary onium salts as catalysts. The effects of catalyst structure, types and concentration of alcohol, and solvent were investigated. Among the alkoxide catalysts tested, the ones with higher Lewis acidity and with more nucleophilic alkoxide anion showed higher catalytic activity. Mixed catalysts of metal alkoxied and crown ether showed higher conversion of PC than metal alkoxide alone. Quaternary onium salts of bulky cation exhibited higher catalytic activity. High polar solvent showed higher yield of HTPPC and the yield increased with the decrease of [PC]/[Initiator] ratio.

  • PDF

Synthesis and Adhesion Properties of Waterborne Polyurethane Adhesives for Footwear according to Polyol Blending

  • Choi, Min Ji;Jeong, Boo Young;Cheon, Jung Mi;Chun, Jae Hwan
    • Elastomers and Composites
    • /
    • v.52 no.1
    • /
    • pp.81-85
    • /
    • 2017
  • In order to improve the water resistance, we synthesized waterborne polyurethane by using polyester polyol, poly(propylene carbonate) (PPC), 4,4'-dicyclohexylmethane diisocyanate ($H_{12}MDI$), and dimethylolpropionic acid (DMPA). The properties of the synthesized waterborne polyurethane using poly(propylene carbonate) (WPUP) were evaluated by FT-IR, $^1H-NMR$, GPC, DSC, TGA, and UTM. The mechanical properties increased while the adhesion properties decreased with the increase in the amount of PPC. The highest water resistance was shown when the ratio of polyester polyol to PPC was 9:1.

Synthesis of the Terpolymers of Propylene Oxide, Cyclohexene Oxide, and Carbon dioxide (Propylene Oxide와 Cyclohexene Oxide와 CO2의 삼원 공중합체의 합성)

  • Lee, Yoon-Bae;Sung, Un-Gyung;Park, Hee-Kyong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.2
    • /
    • pp.1027-1031
    • /
    • 2011
  • In order to use carbon dioxide, one of the green house gases, terpolymers have been synthesized from propylene oxide, cyclohexene oxide, and carbon dioxide with zinc glutarate as catalyst. The polymers have been investigated with FT-IR, $^1H$-NMR, DSC. The glass transition temperatures of terpolymers are dependendent upon mass ratio of the poly(alkylene carbonate by Fox equation.