DOI QR코드

DOI QR Code

Propylene Carbonate Synthesis using Supercritical $CO_2$ and Ionic Liquid

초임계 이산화탄소와 이온성 액체를 이용한 Propylene Carbonate 합성

  • Kim, Byeong-Heon (School of Chemical and Biological Engineering, Seoul National University) ;
  • Jang, Sung-Hyeon (School of Chemical and Biological Engineering, Seoul National University) ;
  • Min, Se-Ryeon (School of Chemical and Biological Engineering, Seoul National University) ;
  • Kim, Hwa-Yong (School of Chemical and Biological Engineering, Seoul National University)
  • 김병헌 (서울대학교화학생물공학부) ;
  • 장성현 (서울대학교화학생물공학부) ;
  • 민세련 (서울대학교화학생물공학부) ;
  • 김화용 (서울대학교화학생물공학부)
  • Received : 2010.11.23
  • Accepted : 2011.02.25
  • Published : 2011.03.31

Abstract

Some ionic liquids are suitable for catalysts and solvents which are applicable to $CO_2$ fixation reaction converting $CO_2$ to carbonate. Using the ionic liquids, the synthesis process will become greener and simpler because of easy catalyst recycling and unnecessary use of volatile and harmful organic solvents. In this work, the synthesis of propylene carbonate from propylene oxide using carbon dioxide and ionic liquids were measured at high pressures up to ~140 bar and at temperatures between $60^{\circ}C$ and $80^{\circ}C$. As a results, we found the optimum condition and obtained the maximum yield under that condition.

몇몇 이온성 액체는 이산화탄소를 고정화하여 카보네이트로 전환해주는 반응의 촉매이자 용매로 적합하다. 이온성 액체를 사용함으로써, 합성 공정은 촉매 재활용이 용이하고 휘발성 물질이나 해로운 유기 용매가 불필요하다는 측면에서 보다 환경적이고 간단해질 수 있다. 본 연구에서는 이산화탄소와 이온성 액체를 이용하여 $60{\sim}80^{\circ}C$, 140bar의 온도, 압력 범위에서 프로필렌 옥사이드가 카보네이트로 얼마나 전환되는지 측정하였다. 그 결과, 최적의 조건을 찾았고 그 조건 하에 최대 수율을 얻었다.

Keywords

References

  1. Choi, D., "Technology Trends of Engineering Plastics," Polymer Science and Technology, 20(1), 3-7 (2009).
  2. Shaikh, A. G., and Swaminathan, S., "Organic Carbonates," Chem. Rev., 96(3), 951-976 (1996). https://doi.org/10.1021/cr950067i
  3. Weissermel, K., and Arpe, H., (Eds.), "Industrial Organic Chemistry," Third ed., Wiley-VCH, Weinheim, New York, 1997.
  4. Clements, J. H., "Reactive Applications of Cyclic Alkylene Carbonates," Ind. Eng. Chem. Res., 42, 663-674 (2003). https://doi.org/10.1021/ie020678i
  5. Vierling, K., (I. G. Farbenindustrie), "Verfahren zur Herstellung von Glykolcarbonat," Ger. Patent., 740, 366-372 (1943).
  6. Pepple, W. J., "Preparation and Properties of the Alkylene Carbonates," Ind. Eng. Chem., 50, 767-770 (1958). https://doi.org/10.1021/ie50581a030
  7. Darensbourg, D. J., "Making Plastics from Carbon Dioxide: Salen metal Complexes as Catalysts for the Production of Polycarbonates from Epoxides and carbon dioxide," Chem. Rev., 107(6), 2388-2410 (2007). https://doi.org/10.1021/cr068363q
  8. Biggadike, K., Angell, R. M., Burgess, C. M., Farrell, R. M., and Weston, H. E., "Selective Plasma Hydrolysis of Glucocorticoid $\gamma$-Lactones and Cyclic Carbonates by the Enzyme Paraoxonase: An Ideal Plasma Inactivation Mechanism," J. Med. Chem., 43, 19-21 (2000). https://doi.org/10.1021/jm990436t
  9. Yin, X., and Moss, J. R., "Recent Developments in the Activation of Carbon Dioxide by Metal Complexes," Coord. Chem. Rev., 181, 27-59 (1999). https://doi.org/10.1016/S0010-8545(98)00171-4
  10. Brauden, C. I., and Schneider G. (Eds.), "Carbon Dioxide Fixation and Resuction in Biological and Model System," Oxford Univ. Press, Oxford, UK (1994).
  11. Leitner, W., "The Coordination Chemistry of Carbon Dioxide and Its Relevance for Catalysis: a Critical Survey," Chem. Rev., 155, 247 (1996).
  12. Kawanami, H., Sasaki, A., Matsui, K., and Ikushima, Y., "A Rapid and Effective Synthesis of Propylene Carbonate using a Supercritical $CO_2$-ionic Liquid System," Chem. Commun., 39(7), 896-897 (2003).
  13. Sun, J., Fujita, S.-I., and Arai, M., "Development in the Green Synthesis of Cyclic Carbonate from Carbon Dioxide using Ionic Liquids," J. Organometallic Chem., 690, 3490-3498 (2005). https://doi.org/10.1016/j.jorganchem.2005.02.011
  14. Park, D. W., Hur, J. H., Jeong, E. S., Park, S. W., and Kim, I., "Synthesis of Propylene Carbonate from Carbon Dioxide and Propylene Oxide using Ionic Liquids," Studies in Surface Science and Catal., 153, 267-277 (2004).
  15. Pouling, B. E., Prausnitz, J. M., and O'Connell, J. P., "The Properties of Gases and Liquids," 5th ed., McGraw-Hill, NY, 2001.
  16. Jang, S., Cho, D. W., Im, T., and Kim, H., "High-pressure Phase Behavior of $CO_2$ + 1-Butyl-3-Methylimidazolium Chloride System," Fluid Phase Equilibria., 299, 216-221 (2010). https://doi.org/10.1016/j.fluid.2010.09.039