• Title/Summary/Keyword: proposed model

Search Result 33,361, Processing Time 0.052 seconds

SYNTHESIS OF DISCRETE TIME FLIGHT CONTROL SYSTEM USING NONLINEAR MODEL MATCHING

  • Aoi, Kazunari;Osa, Yasuhiro;Uchikado, Shigeru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.460-460
    • /
    • 2000
  • Until now various model matching systems have been proposed for linear system, but very little has been done for nonlinear system In this paper, a design method of discrete time flight control system using nonlinear model matching is proposed. This method is based on Hirschorn's algorithm and facilitates easy determination of the control law using the relationship, between the output and the input, which is obtained by the time shift of the output. Also as a result, this method is the extension of the linear model matching control system proposed by Wolovich, in which the control law is obtained by left-multiplying the output by the interactor matrix. At the end of paper, the proposed control system is applied to CCV flight control system of an aircraft and the feasibility of the proposed approach is shown by the numerical simulations.

  • PDF

Evaluation of Human Interface using Fuzzy Measures and Fuzzy Integrals (퍼지척도 퍼지적분을 이용한 휴면 인터페이스의 평가)

  • 손영선
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.31-36
    • /
    • 1998
  • This paper proposes a method to select essential elements in a human evaluation model using the Choquet integral based on fuzzy measures and applies the model to the evaluation of human interface. Three kinds of concepts, Increment Degree, average of Increment Degree, Necessity coefficient, are defined. The proposed method selects essential elements by the use of the Relative necessity coefficient. The proposed method is applied to the analysis of human interface. In the experiment, (1) a warning sound, (2)a color vision, (3) the size of working area, (4) a response of confirmation, are considered as human interface elements. subjects answer the questionnarie after the experiment. From the data of questionnaire, fuzzy measures are identified and are applied to the proposed model. effectiveness of the proposed model is confirmed by the comparison of human interface elements extracted from the proposed model and those from the questionnarie.

  • PDF

A Description of Thermomechanical Behavior Using a Rheological Model (리올러지 모델을 이용한 열적 기계적 변형 거동 모사)

  • Lee Keum-Oh;Hong Seong-Gu;Lee Soon-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.7 s.250
    • /
    • pp.757-764
    • /
    • 2006
  • Isothermal cyclic stress-strain deformation and thermomechanical deformation (TMD) of 429EM stainless steel were analyzed using a rheological model employing a bi-linear model. The proposed model was composed of three parameters: elastic modulus, yield stress and tangent modulus. Monotonic stress-strain curves at various temperatures were used to construct the model. The yield stress in the model was nearly same as 0.2% offset yield stress. Hardening relation factor, m, was proposed to relate cyclic hardening to kinematic hardening. Isothermal cyclic stress-strain deformation could be described well by the proposed model. The model was extended to describe TMD. The results revealed that the hi-linear thermomechanical model overestimates the experimental data under both in-phase and out-of-phase conditions in the temperature range of $350-500^{\circ}C$ and it was due to the enhanced dynamic recovery effect.

The Implementation of an Advanced Taxi Movement Model in the ONE Simulator (ONE 시뮬레이터에서 향상된 택시 이동 모델 구현)

  • Oh, SangYeob
    • Journal of Digital Convergence
    • /
    • v.13 no.1
    • /
    • pp.237-241
    • /
    • 2015
  • The ONE simulator has been used the tool for the DTN routing protocols. A movement model on DTN characteristic importantly affects to the simulation results of routing protocols. Especially, the WDM model provides the real similar situation such as commuting using vehicles, movements to a meeting point in office hours, activities after work, and etc. Our previous work proposed a taxi movement model in the WDM model. However, there is a difference between the real situations and the proposed model in finding a passenger. In this paper, we proposed an advanced taxi movement model with a taxi driver's locality and visibility range in order to configurate the real similar situation. And we analyze the difference between the previous model and the proposed model.

Development of Optimization Model for Traffic Signal Timing in Grid Networks (네트워크형 가로망의 교통신호제어 최적화 모형개발)

  • 김영찬;유충식
    • Journal of Korean Society of Transportation
    • /
    • v.18 no.1
    • /
    • pp.87-97
    • /
    • 2000
  • Signal optimization model is divided bandwidth-maximizing model and delay-minimizing model. Bandwidth-maximizing model express model formulation as MILP(Mixed Integer Linear Programming) and delay-minimizing model like TRANSYT-7F use "hill climbing" a1gorithm to optimize signal times. This study Proposed optimization model using genetic algorithm one of evolution algorithm breaking from existing optimization model This Proposed model were tested by several scenarios and evaluated through NETSIM with TRANSYT-7F\`s outputs. The result showed capability that can obtain superior solution.

  • PDF

Response analysis of soil deposit considering both frequency and strain amplitude dependencies using nonlinear causal hysteretic damping model

  • Nakamura, Naohiro
    • Earthquakes and Structures
    • /
    • v.4 no.2
    • /
    • pp.181-202
    • /
    • 2013
  • It is well known that the properties of the soil deposits, especially the damping, depend on both frequency and strain amplitude. Therefore it is important to consider both dependencies to calculate the soil response against earthquakes in order to estimate input motions to buildings. However, it has been difficult to calculate the seismic response of the soil considering both dependencies directly. The author has studied the time domain evaluation of the frequency dependent dynamic stiffness, and proposed a simple hysteretic damping model that satisfies the causality condition. In this paper, this model was applied to nonlinear analyses considering the effects of the strain amplitude dependency of the soil. The basic characteristics of the proposed method were studied using a two layered soil model. The response behavior was compared with the conventional model e.g. the Ramberg-Osgood model and the SHAKE model. The characteristics of the proposed model were studied with regard to the effects of element divisions and the frequency dependency that is a key feature of the model. The efficiency of the model was confirmed by these studies.

FUZZY REGRESSION MODEL WITH MONOTONIC RESPONSE FUNCTION

  • Choi, Seung Hoe;Jung, Hye-Young;Lee, Woo-Joo;Yoon, Jin Hee
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.3
    • /
    • pp.973-983
    • /
    • 2018
  • Fuzzy linear regression model has been widely studied with many successful applications but there have been only a few studies on the fuzzy regression model with monotonic response function as a generalization of the linear response function. In this paper, we propose the fuzzy regression model with the monotonic response function and the algorithm to construct the proposed model by using ${\alpha}-level$ set of fuzzy number and the resolution identity theorem. To estimate parameters of the proposed model, the least squares (LS) method and the least absolute deviation (LAD) method have been used in this paper. In addition, to evaluate the performance of the proposed model, two performance measures of goodness of fit are introduced. The numerical examples indicate that the fuzzy regression model with the monotonic response function is preferable to the fuzzy linear regression model when the fuzzy data represent the non-linear pattern.

New Computer Retina Model Reflecting the Mechanism of Amacrine Cell (무축삭세포의 기전을 반영한 새로운 계산론적 망막 모델)

  • 김명남;조진호
    • Journal of Biomedical Engineering Research
    • /
    • v.22 no.4
    • /
    • pp.331-338
    • /
    • 2001
  • In this paper, we have proposed a new computer retina model reflecting the mechanism of transient amacrine cell on the basis of a conventional computer retina model to understand mechanism of visual information processing. The conventional computer retina model contained most of mechanism for other retina models and it was verified with the physiological data. However, we found that a conventional computer retina model doesn't have the mechanism of amacrine cell that was likely to respond to moving stimulus. In proposed model, therefore, a conventional computer model that considered from photoreceptors to bipolar cells and a new computer model that considered for transient amacrine cell and ganglion cell was combined. As we compared the physiological data with the results of computer simulation of transient amacrine cell about fixed stimulus and moving stimulus, we confirmed that the proposed new computer retina model was normally operated.

  • PDF

Multi-Phase Model Update for System Identification of PSC Girders under Various Prestress Forces

  • Ho, Duc-Duy;Hong, Dong-Soo;Kim, Jeong-Tae
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.6
    • /
    • pp.579-592
    • /
    • 2010
  • This paper presents a multi-phase model update approach for system identification of prestressed concrete (PSC) girders under various prestress forces. First, a multi-phase model update approach designed on the basis of eigenvalue sensitivity concept is newly proposed. Next, the proposed multi-phase approach is evaluated from controlled experiments on a lab-scale PSC girder for which forced vibration tests are performed for a series of prestress forces. On the PSC girder, a few natural frequencies and mode shapes are experimentally measured for the various prestress forces. The corresponding modal parameters are numerically calculated from a three-dimensional finite element (FE) model which is established for the target PSC girder. Eigenvalue sensitivities are analyzed for potential model-updating parameters of the FE model. Then, structural subsystems are identified phase-by-phase using the proposed model update procedure. Based on model update results, the relationship between prestress forces and model-updating parameters is analyzed to evaluate the influence of prestress forces on structural subsystems.

Hysteresis characterization and identification of the normalized Bouc-Wen model

  • Li, Zongjing;Shu, Ganping
    • Structural Engineering and Mechanics
    • /
    • v.70 no.2
    • /
    • pp.209-219
    • /
    • 2019
  • By normalizing the internal hysteresis variable and eliminating the redundant parameter, the normalized Bouc-Wen model is considered to be an improved and more reasonable form of the Bouc-Wen model. In order to facilitate application and further research of the normalized Bouc-Wen model, some key aspects of the model need to be uncovered. In this paper, hysteresis characterization of the normalized Bouc-Wen model is first studied with respect to the model parameters, which reveals the influence of each model parameter to the shape of the hysteresis loops. The parameter identification scheme is then proposed based on an improved genetic algorithm (IGA), and verified by experimental test data. It is proved that the proposed method can be an efficacious tool for identification of the model parameters by matching the reconstructed hysteresis loops with the target hysteresis loops. Meanwhile, the IGA is shown to outperform the standard GA. Finally, a simplified identification method is proposed based on parameter sensitivity, which indicates that the efficiency of the identification process can be greatly enhanced while maintaining comparable accuracy if the low-sensitivity parameters are reasonably restricted to narrower ranges.