Browse > Article
http://dx.doi.org/10.12989/sem.2019.70.2.209

Hysteresis characterization and identification of the normalized Bouc-Wen model  

Li, Zongjing (School of Civil Engineering, Southeast University)
Shu, Ganping (School of Civil Engineering, Southeast University)
Publication Information
Structural Engineering and Mechanics / v.70, no.2, 2019 , pp. 209-219 More about this Journal
Abstract
By normalizing the internal hysteresis variable and eliminating the redundant parameter, the normalized Bouc-Wen model is considered to be an improved and more reasonable form of the Bouc-Wen model. In order to facilitate application and further research of the normalized Bouc-Wen model, some key aspects of the model need to be uncovered. In this paper, hysteresis characterization of the normalized Bouc-Wen model is first studied with respect to the model parameters, which reveals the influence of each model parameter to the shape of the hysteresis loops. The parameter identification scheme is then proposed based on an improved genetic algorithm (IGA), and verified by experimental test data. It is proved that the proposed method can be an efficacious tool for identification of the model parameters by matching the reconstructed hysteresis loops with the target hysteresis loops. Meanwhile, the IGA is shown to outperform the standard GA. Finally, a simplified identification method is proposed based on parameter sensitivity, which indicates that the efficiency of the identification process can be greatly enhanced while maintaining comparable accuracy if the low-sensitivity parameters are reasonably restricted to narrower ranges.
Keywords
Bouc-Wen model; hysteresis; characterization; identification; genetic algorithm;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Deng, K., Pan, P., Li, W. and Xue, Y. (2015), "Development of a buckling restrained shear panel damper", J. Constr. Steel Res., 106, 311-321.   DOI
2 Goldberg, D.E. (1989), Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley, New York, U.S.A.
3 Hamby, D.M. (1994), "A review of techniques for parameter sensitivity analysis of environmental models", Environ. Monit. Assess., 32(2), 135-154.   DOI
4 Hann, C.E., Singh-Levett, I., Deam, B.L., Mander, J.B. and Chase, J.G. (2009), "Real-time system identification of a nonlinear four-story steel frame structure-application to structural health monitoring", IEEE Sens. J., 9(11), 1339-1346.   DOI
5 Holland, J.H. (1975), Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann Arbor, Michigan, U.S.A.
6 Ikhouane, F. and Rodellar, J. (2007), Systems with Hysteresis: Analysis, Identification and Control Using the Bouc-Wen Model, John Wiley & Sons, Ltd., Chichester, West Sussex, U.K.
7 Ma, F., Zhang, H., Bockstedte, A., Foliente, G.C. and Paevere, P. (2004), "Parameter analysis of the differential model of hysteresis", J. Appl. Mech.-Trans. ASME, 71(3), 342-349.   DOI
8 Mohagheghian, K. and Mohammadi, R.K. (2017), "Comparison of online model updating methods in pseudo-dynamic hybrid simulations of TADAS frames", Bull. Earthq. Eng., 15(10), 1-22.   DOI
9 Saeedi, F., Shabakhty, N. and Mousavi, S.R. (2016), "Seismic assessment of steel frames with triangular-plate added damping and stiffness devices", J. Constr. Steel Res., 125, 15-25.   DOI
10 Rahimi, S. and Soltani, M. (2017), "Expected extreme value of pounding force between two adjacent buildings", Struct. Eng. Mech., 61(2), 183-192.   DOI
11 Sengupta, P. and Li, B. (2013), "Modified Bouc-Wen model for hysteresis behavior of RC beam-column joints with limited transverse reinforcement", Eng. Struct., 46, 392-406.   DOI
12 Shampine, L.F. and Reichelt, M.W. (1997), "The MATLAB ODE Suite", SIAM J. Sci. Comput., 18(1), 1-22.   DOI
13 Srinivas, M. and Patnaik, L.M. (1994), "Adaptive probabilities of crossover and mutation in genetic algorithms", IEEE Trans. Syst. Man Cybern., 24(4), 656-667.   DOI
14 Shih, M.H. and Sung, W.P. (2005), "A model for hysteretic behavior of rhombic low yield strength steel added damping and stiffness", Comput. Struct., 83(12-13), 895-908.   DOI
15 Sireteanu, T., Mitu, A.M., Giuclea, M. and Solomon, O. (2014), "A comparative study of the dynamic behavior of Ramberg-Osgood and Bouc-Wen hysteresis models with application to seismic protection devices", Eng. Struct., 76, 255-269.   DOI
16 Spencer, B.F., Dyke, S.J., Sain, M.K. and Carlson, J.D. (1997), "Phenomenological model of a magnetorheological damper", J. Eng. Mech., 123(3), 230-238.   DOI
17 Nakashima, M., Akazawa, T. and Tsuji, B. (1995), "Strainhardening behavior of shear panels made of low-yield steel. II: model", J. Struct. Eng., 121(12), 1750-1757.   DOI
18 Alcan, P. and Basligil, H. (2012), "A genetic algorithm application using fuzzy processing times in non-identical parallel machine scheduling problem", Adv. Eng. Softw., 45(1), 272-280.   DOI
19 Badrakhan, F. (1987), "Rational study of hysteretic systems under stationary random excitation", Int. J. Nonlin. Mech., 22(4), 312-325.   DOI
20 Alessandri, S., Giannini, R., Paolacci, F. and Malena, M. (2015), "Seismic retrofitting of an HV circuit breaker using base isolation with wire ropes. Part 1: Preliminary tests and analyses", Eng. Struct., 98, 251-262.   DOI
21 Badrakhan, F. (1988), "Dynamic analysis of yielding and hysteretic system by polynomial approximation", J. Sound Vibr., 125(1), 23-42.   DOI
22 Bouc, R. (1967), "Forced vibration of mechanical systems with hysteresis", Proceedings of the 4th Conference on Nonlinear Oscillation, Prague, Czechoslovakia.
23 Benavent-Climent, A. (2010), "A brace-type seismic damper based on yielding the walls of hollow structural sections", Eng. Struct., 32(4), 1113-1122.   DOI
24 Black, C.J., Makris, N. and Aiken, I.D. (2004), "Component testing, seismic evaluation and characterization of bucklingrestrained braces, J. Struct. Eng., 130(6), 880-894.   DOI
25 Bolshakov, G.V. and Lapovok, A.J. (1996), "A Preisach model for magnetoelastic hysteresis", J. Magn. Magn. Mater., 162(1), 112-116.   DOI
26 Chan, R.W.K., Albermani, F. and Williams, M.S. (2009), "Evaluation of yielding shear panel device for passive energy dissipation", J. Constr. Steel Res., 65(2), 260-268.   DOI
27 Charalampakis, A.E. and Koumousis, V.K. (2008), "Identification of Bouc-Wen hysteretic systems by a hybrid evolutionary algorithm", J. Sound Vibr., 314(3), 571-585.   DOI
28 Chen, X., Li, J., Li, Y. and Gu, X. (2016), "Lyapunov-based semiactive control of adaptive base isolation system employing magnetorheological elastomer base isolators", Earthq. Struct., 11(6), 1077-1099.   DOI
29 Davidenkov, N.N. (1939), "Hysteretic property of the ferrous metal", Tech. Phys., 8, 483-489.
30 Dao, S.D., Abhary, K. and Marian, R. (2017), "A bibliometric analysis of genetic algorithms throughout the history", Comput. Ind. Eng., 110, 395-403.   DOI
31 Deb, K., Pratap, A., Agarwal, S. and Meyarivan, T. (2002), "A fast and elitist multiobjective genetic algorithm: NSGA-II", IEEE Trans. Evol. Comput., 6(2), 182-197.   DOI
32 Tena-Colunga, A. (1997), "Mathematical modelling of the ADAS energy dissipation device", Eng. Struct., 19(10), 811-821.   DOI
33 Tsai, K.C., Chen, H.W., Hong, C.P. and Su, Y.F. (1993), "Design of steel triangular plate energy absorbers for seismic-resistant construction", Earthq. Spectr., 9(3), 505-528.   DOI
34 Wen, Y.K. (1976), "Method for random vibration of hysteretic systems", J. Eng. Mech., 102(2), 249-263.
35 Xu, L.Y., Nie, X., Fan, J.S. (2016), "Cyclic behaviour of lowyield-point steel shear panel dampers", Eng. Struct., 126, 391-404.   DOI
36 Zitzler, E., Deb, K. and Thiele, L. (2014), "Comparison of multiobjective evolutionary algorithms: Empirical results", Evol. Comput., 8(2), 173-195.   DOI
37 Yang, S. and Chen, Y. (1992), "The bifurcations and singularities of the parameterical vibration in a system with Davidenkov's hysteretic nonlinearity", Mech. Res. Commun., 19(4), 267-272.   DOI
38 Zhang, H., Foliente, G.C., Yang, Y. and Ma, F. (2002), "Parameter identification of inelastic structures under dynamic loads", Earthq. Eng. Struct. Dyn., 31(5), 1113-1130.   DOI
39 Chen, Z., Ge, H. and Usami, T. (2006), "Hysteretic model of stiffened shear panel dampers", J. Struct. Eng., 132(3), 478-483.   DOI