• Title/Summary/Keyword: proportion reasoning(ability, problem)

Search Result 5, Processing Time 0.02 seconds

A Study on the Solving Proportion Problems of Mathematics Textbooks and Proportional Reasoning in 6th Graders (초등학교 6학년 학생들의 교과서 비례 문제 해결과 비례 추론에 관한 연구)

  • Kwan, Mi-Suk;Kim, Nam-Gyunl
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.13 no.2
    • /
    • pp.211-229
    • /
    • 2009
  • The purpose of this study is analysis of to investigate relation proportion problem of mathematics textbooks of 7th curriculum to proportional reasoning(relative thinking, unitizing, partitioning, ratio sense, quantitative and change, rational number) of Lamon's proposal at sixth grade students. For this study, I develop two test papers; one is for proportion problem of mathematics textbooks test paper and the other is for proportional reasoning test paper which is devided in 6 by Lamon. I test it with 2 group of sixth graders who lived in different region. After that I analysis their correlation. The result of this study is following. At proportion problem of mathematics textbooks test, the mean score is 68.7 point and the score of this test is lower than that of another regular tests. The percentage of correct answers is high if the problem can be solved by proportional expression and the expression is in constant proportion. But the percentage of correct answers is low, if it is hard to student to know that the problem can be expressed with proportional expression and the expression is not in constant proportion. At proportion reasoning test, the highest percentage of correct answers is 73.7% at ratio sense province and the lowest percentage of that is 16.2% at quantitative and change province between 6 province. The Pearson correlation analysis shows that proportion problem of mathematics textbooks test and proportion reasoning test has correlation in 5% significance level between them. It means that if a student can solve more proportion problem of mathematics textbooks then he can solve more proportional reasoning problem, and he have same ability in reverse order. In detail, the problem solving ability level difference between students are small if they met similar problem in mathematics text book, and if they didn't met similar problem before then the differences are getting bigger.

  • PDF

An Analysis on the Proportional Reasoning Understanding of 6th Graders of Elementary School -focusing to 'comparison' situations- (초등학교 6학년 학생들의 비례 추론 능력 분석 -'비교' 상황을 중심으로-)

  • Park, Ji Yeon;Kim, Sung Joon
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.20 no.1
    • /
    • pp.105-129
    • /
    • 2016
  • The elements of mathematical processes include mathematical reasoning, mathematical problem-solving, and mathematical communications. Proportion reasoning is a kind of mathematical reasoning which is closely related to the ratio and percent concepts. Proportion reasoning is the essence of primary mathematics, and a basic mathematical concept required for the following more-complicated concepts. Therefore, the study aims to analyze the proportion reasoning ability of sixth graders of primary school who have already learned the ratio and percent concepts. To allow teachers to quickly recognize and help students who have difficulty solving a proportion reasoning problem, this study analyzed the characteristics and patterns of proportion reasoning of sixth graders of primary school. The purpose of this study is to provide implications for learning and teaching of future proportion reasoning of higher levels. In order to solve these study tasks, proportion reasoning problems were developed, and a total of 22 sixth graders of primary school were asked to solve these questions for a total of twice, once before and after they learned the ratio and percent concepts included in the 2009 revised mathematical curricula. Students' strategies and levels of proportional reasoning were analyzed by setting up the four different sections and classifying and analyzing the patterns of correct and wrong answers to the questions of each section. The results are followings; First, the 6th graders of primary school were able to utilize various proportion reasoning strategies depending on the conditions and patterns of mathematical assignments given to them. Second, most of the sixth graders of primary school remained at three levels of multiplicative reasoning. The most frequently adopted strategies by these sixth graders were the fraction strategy, the between-comparison strategy, and the within-comparison strategy. Third, the sixth graders of primary school often showed difficulty doing relative comparison. Fourth, the sixth graders of primary school placed the greatest concentration on the numbers given in the mathematical questions.

Analysis on cognitive variables affecting proportion problem solving ability with different level of structuredness (비례 문제 해결에 영향을 주는 인지적 변인 분석)

  • Sung, Chang-Geun;Lee, Kwang-Ho
    • Journal of Educational Research in Mathematics
    • /
    • v.22 no.3
    • /
    • pp.331-352
    • /
    • 2012
  • The purpose of the study is to verify what cognitive variables have significant effect on proportional problem solving. For this aim, the study classified proportional problem into well-structured, moderately-structured, ill-structured problem by the level of structuredness, then classified the cognitive variables as well into factual algorithm knowledge, conceptual knowledge, knowledge of problem type, quantity change recognition and meta-cognition(meta-regulation and meta-knowledge). Then, it verified what cognitive variables have significant effects on 6th graders' proportional problem solving abilities through multiple regression analysis technique. As a result of the analysis, different cognitive variables effect on solving proportional problem classified by the level of structuredness. Through the results, the study suggest how to teach and assess proportional reasoning and problem solving in elementary mathematics class.

  • PDF

Development of a Three-Dimensional Analytical Framework for Analyzing Chemistry I Questions on the CSAT and Analysis of Chemistry I Questions (대학수학능력시험 화학 I 문항 분석을 위한 3차원 분석틀 개발과 화학 I 문항 분석)

  • Jihun Park;Sunhyang Park;Jeonghee Nam
    • Journal of the Korean Chemical Society
    • /
    • v.68 no.1
    • /
    • pp.40-53
    • /
    • 2024
  • The study investigates the number and proportion of questions in each area by examining Chemistry I questions from the College Scholastic Ability Test from 2019 to 2022. The analysis was conducted using a three-dimensional framework that included key concepts in chemistry, behavioral domains in chemistry, and behavioral domains in mathematics. The results indicated that Chemistry I questions on the College Scholastic Ability Test had a relatively even distribution of questions across core individual topics, but highly difficult questions were predominantly biased toward stoichiometry. In terms of the behavioral domains in chemistry, there was a remarkably low proportion of questions related to problem recognition and hypothesis establishment, as well as designing research and implementing research. Conversely, highly difficult questions were more inclined towards drawing conclusions and evaluations. Regarding behavioral domains in mathematics, there was a limited number of questions addressing heuristic reasoning and deductive reasoning. On the other hand, high-difficulty questions favored internal problem-solving ability. Additionally, certain key concepts in chemistry and behavioral domains in chemistry exhibited a strong correlation with specific behavioral domains in mathematics. This characteristic was particularly evident in questions that encompassed higher-dimensional behavioral domains in mathematics, which students tend to find challenging.

Exploring fraction knowledge of the stage 3 students in proportion problem solving (단위 조정 3단계 학생의 비례 문제 해결에서 나타나는 분수 지식)

  • Lee, Jin Ah;Lee, Soo Jin
    • The Mathematical Education
    • /
    • v.61 no.1
    • /
    • pp.1-28
    • /
    • 2022
  • The purpose of this study is to explore how students' fractional knowledge is related to their solving of proportion problems. To this end, 28 clinical interviews with four middle-grade students, each lasting about 30~50 minutes, were carried out from May 2021 to August 2021. The present study focuses on two 7th grade students who exhibited their ability to coordinate three levels of units prior to solving whole number problems. Although the students showed interiorization of three levels of units in solving whole number problems, how they coordinated three levels of units were different in solving proportion problems depending on whether the problems required reasoning with whole numbers or fractions. The students could coordinate three levels of units prior to solving the problems involving whole numbers, they coordinated three levels of units in activity for the problems involving fractions. In particular, the ways the two students employed partitioning operations and how they coordinated quantitative unit structures were different in solving proportion problems involving improper fractions. The study contributes to the field by adding empirical data corroborating the hypotheses that students' ability to transform one three levels of units structure into another one may not only be related to their interiorization of recursive partitioning operations, but it is an important foundation for their construction of splitting operations for composite units.