• Title/Summary/Keyword: property soil

Search Result 733, Processing Time 0.037 seconds

Relationship between Chemical Property and Microbial Activity of Reclaimed Tidal Lands at Western Coast Area in Korea

  • Ko, Eun-Seong;Joung, Ji-An;Kim, Chang-Hwan;Lee, Su Hwan;Sa, Tongmin;Choi, Joon-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.4
    • /
    • pp.254-261
    • /
    • 2014
  • The scientific information between microbial activities and chemical properties of reclaimed tidal soil is not enough to apply for reclamation projects. This study was conducted to investigate the relation between chemical properties and microbial activities of reclaimed tidal lands located at western coastal area (25 samples from Nampo, Ewon, Sukmoon and Shihwa sites). Most of the reclaimed soils showed chemical characteristics as salinity soil except Nampo site. The major component influenced the salinity of reclaimed soil was identified as a sodium from the relationship between EC and exchangeable cation. With an increase in EC of soil, the population of mesophilic bacteria decreases whereas halotolerant and halophilic bacteria increases. The population of mesophilic bacteria increased with an increase in both organic matter and dehydrogenase activity. However, the population of halotolerant and halophilic bacteria decreased with an increase in organic matter. Based on the relation between chemical property and microbial activity of reclaimed tidal soil, electrical conductivity and organic matter as chemical properties of soil, population of mesophilic bacteria, halotolerant and halophilic bacteria and dehydrogenase activity as microbial activities could be the major parameters for reclamation process.

Performance Evaluation for the Application of Roof Green Box Unit System Combined with Engineering P.E.Waterproof and Root Penetration Sheet (엔지니어링 PE방수.방근시트가 결합된 박스 유닛형 옥상 녹화 시스템 적용을 위한 성능평가)

  • Oh, Chang-Won;Hong, Jong-Chul;Park, Ki-Bong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.2
    • /
    • pp.125-131
    • /
    • 2016
  • According to the increment of urban buildings, the demand of eco-environment space will be also increased. Therefore, the artificial ground green system on a roof will be supplied gradually. In this study, the concept of simplification, unification and prefabrication was widely applied to supply green system. Consequently, the box unit system with a continuous soil layer was developed, and adhesive property, wind resistance and insulation property of this system were evaluated for site application. As a results of adhesive property and wind resistance test, comparing with design wind pressure and wind velocity, this system was safe at the height of 100m building located in urban. In addition, results of temperature measurement for 120 days showed 17% higher insulation property at daytime and 45% higher insulation property at night than normal box unit system owing to continuous soil layer.

Attenuation of Fundamental Longitudinal Guided Wave Mode in Steel Pipes Embedded in Soil

  • Lee, Ju-Won;Shin, Sung-Woo;Na, Won-Bae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.6
    • /
    • pp.539-547
    • /
    • 2010
  • In this study, characteristics of the fundamental longitudinal guided wave mode, L(0,1), which is a usual mode employed in the inspection of the above-ground pipe, of the buried pipe were numerically investigated considering property changes in the surrounding soil. Results showed that soil conditions are significantly affecting the attenuation of L(0,1) mode in the pipe embedded in soil. Especially, if the soil is partially saturated, the attenuation of L(0,1) mode is larger and is very similar regardless of the degree of water saturation in the surrounding soil. However, when the soil is fully saturated, the attenuation of L(0,1) mode is less and show different trend with its partially saturated counterparts.

Integral Abutment Bridge behavior under uncertain thermal and time-dependent load

  • Kim, WooSeok;Laman, Jeffrey A.
    • Structural Engineering and Mechanics
    • /
    • v.46 no.1
    • /
    • pp.53-73
    • /
    • 2013
  • Prediction of prestressed concrete girder integral abutment bridge (IAB) load effect requires understanding of the inherent uncertainties as it relates to thermal loading, time-dependent effects, bridge material properties and soil properties. In addition, complex inelastic and hysteretic behavior must be considered over an extended, 75-year bridge life. The present study establishes IAB displacement and internal force statistics based on available material property and soil property statistical models and Monte Carlo simulations. Numerical models within the simulation were developed to evaluate the 75-year bridge displacements and internal forces based on 2D numerical models that were calibrated against four field monitored IABs. The considered input uncertainties include both resistance and load variables. Material variables are: (1) concrete elastic modulus; (2) backfill stiffness; and (3) lateral pile soil stiffness. Thermal, time dependent, and soil loading variables are: (1) superstructure temperature fluctuation; (2) superstructure concrete thermal expansion coefficient; (3) superstructure temperature gradient; (4) concrete creep and shrinkage; (5) bridge construction timeline; and (6) backfill pressure on backwall and abutment. IAB displacement and internal force statistics were established for: (1) bridge axial force; (2) bridge bending moment; (3) pile lateral force; (4) pile moment; (5) pile head/abutment displacement; (6) compressive stress at the top fiber at the mid-span of the exterior span; and (7) tensile stress at the bottom fiber at the mid-span of the exterior span. These established IAB displacement and internal force statistics provide a basis for future reliability-based design criteria development.

Physico-Chemical Properties of Organically Cultivated Upland Soils (유기농경지 밭 토양의 물리화학적 특성)

  • Lee, Cho-Rong;Hong, Seung-Gil;Lee, Sang-Beom;Park, Choong-Bae;Kim, Min-Gi;Kim, Jin-Ho;Park, Kwang-Lai
    • Korean Journal of Organic Agriculture
    • /
    • v.23 no.4
    • /
    • pp.875-886
    • /
    • 2015
  • The upland soils (56 samples) from organic farms in Gyeonggi-do (12 sites), Gangwon-do (8 sites), Chungcheong-do (14 sites), Gyeongsang-do (4 sites), Jeollado (18 sites) in Korea were collected and their physical and chemical properties were analyzed by RDA's methods. In the results of physical property, the bulk density of soils averaged $1.14Mgm^{-3}$ (surface soil), $1.38Mgm^{-3}$ (subsoil), respectively. The porosity of them was 57%, 48%. Organically managed soil's (OS) bulk density was lower than conventional soil's but OS's porosity was a little higher than conventionally managed soil in surface soil. The depth of plough layer in organically managed soils was 21.2 cm indicating that the organic farming had good effect on soil physical property. In the results of chemical property, the surface soil pH was 6.9 and the contents of organic matter (OM) was $26gkg^{-1}$, available phosphate (Avail. $P_2O_5$) was $554mgkg^{-1}$, exchangeable calcium (Exch. Ca) was $8.9cmol_ckg^{-1}$, exchangeable potassium (Exch. K) was $0.89cmol_ckg^{-1}$, exchangeable magnesium (Exch. Mg) was $2.0cmol_ckg^{-1}$. The subsoil pH was 6.8 and the contents of OM was $21gkg^{-1}$, avail. $P_2O_5$ was $491mgkg^{-1}$, exch. Ca was $7.9cmol_ckg^{-1}$, exch. K was $0.68cmol_ckg^{-1}$, exch. Mg was $1.8cmol_ckg^{-1}$. The nutrient accumulation emerged in organic farming. Compared to the optimum nutrient range for the conventional upland soils, the exceed rate of pH, OM, available phosphate, and exchangeable Ca, K, and Mg was 79, 52, 64, 84, 66% and 55%, respectively, which mainly resulted from the over-application of lime materials or livestock manure compost. With these results it is suggested that organic farm need to reduce the use of inputs, which make soil alkalification or nutrient accumulation. More study on effects of inputs on lowering soil pH from alkalification could help organically managed soil to be improved.

An Experimental Study for Substitutability of Sand Mat with Precious Slag Ball (풍쇄 슬래그의 샌드매트 대체 가능성에 대한 실험적 연구)

  • Shin, Eun-Chul;Lee, Woon-Hyun;Kang, Jeong-Ku
    • Journal of the Korean Geosynthetics Society
    • /
    • v.9 no.2
    • /
    • pp.1-9
    • /
    • 2010
  • At present, the sand mat method is actively used for improvement of soft ground. But, there are some problems related with sand mat which has been used as a way to accelerate consolidation settlement. First of all, insufficiency of sand due to imbalances in market supply and demand is the one of the biggest problems, which makes price high of sand and delays a term of total construction work. Moreover, it is necessary to preserve integrity of environment from natural disruption caused by indiscreet quarrying and dredging operation to supply sand for soil improvement construction site. This paper presents the feasibility study to use of Precious Slag Ball instead of sand mat as the replacing material through the basic soil property tests, the medium of discharge capacity test and analysis of settlement property. It is also evaluates the performance of Precious Slag Ball as a sand mat in terms of discharge capacity, ground settlement by the K-Embank program based on field experimental work.

  • PDF

An Experimental Study on Bottom Ash for Utilization of Subbase Materials (저회의 성토재료 활용성에 대한 실험적 연구)

  • Jung, Sang-Hwa;Choe, Myong-Jin;Lee, Bong-Chun;Choi, Young-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.4
    • /
    • pp.89-98
    • /
    • 2010
  • Recently, many researches on bottom ash which is produced in the burning process of power plant are actively performed for its utilization for soil-subbase materials. In this paper, bottom ashes from 5 different power plants are prepared and several tests including compaction, CBR, and tri-axial compression are carried out for mixed bottom ash and weathered soil considering 3 replacement ratio of 30%, 50%, and 70%. Through the tests, CBR result over 20 are evaluated without plastic property, which shows availability of subbase material. With higher increase in replacement ratio of bottom ash, CBR of mixed soil increases due to the higher mechanical performance of bottom ash. However, replacement effects of bottom ash on friction angle and cohesion are evaluated to be little since bottom ash plays a little role in rearrangement of mixed soil. Bottom ash with a good mechanical property is evaluated to have reasonable bearing capacity which shows a good property for subbase materials.

  • PDF

Characteristic equation solution of nonuniform soil deposit: An energy-based mode perturbation method

  • Pan, Danguang;Lu, Wenyan;Chen, Qingjun;Lu, Pan
    • Geomechanics and Engineering
    • /
    • v.19 no.5
    • /
    • pp.463-472
    • /
    • 2019
  • The mode perturbation method (MPM) is suitable and efficient for solving the eigenvalue problem of a nonuniform soil deposit whose property varies with depth. However, results of the MPM do not always converge to the exact solution, when the variation of soil deposit property is discontinuous. This discontinuity is typical because soil is usually made up of sedimentary layers of different geologic materials. Based on the energy integral of the variational principle, a new mode perturbation method, the energy-based mode perturbation method (EMPM), is proposed to address the convergence of the perturbation solution on the natural frequencies and the corresponding mode shapes and is able to find solution whether the soil properties are continuous or not. First, the variational principle is used to transform the variable coefficient differential equation into an equivalent energy integral equation. Then, the natural mode shapes of the uniform shear beam with same height and boundary conditions are used as Ritz function. The EMPM transforms the energy integral equation into a set of nonlinear algebraic equations which significantly simplifies the eigenvalue solution of the soil layer with variable properties. Finally, the accuracy and convergence of this new method are illustrated with two case study examples. Numerical results show that the EMPM is more accurate and convergent than the MPM. As for the mode shapes of the uniform shear beam included in the EMPM, the additional 8 modes of vibration are sufficient in engineering applications.

Soil Management through Green Manure Crop Cultivation Prior to Tea Plantation

  • Kim, K.J.;Yoon, C.Y.;Kim, D.J.;Kim, S.K.;Heo, K.H.;Choi, J.;Lee, J.Y.;Park, J.D.
    • Korean Journal of Organic Agriculture
    • /
    • v.19 no.spc
    • /
    • pp.25-29
    • /
    • 2011
  • This study was performed to analyze the improvement of soil physical property and soil biota characteristics through cultivation of green manure crops for a one-year period before creation of a tea plantation as follows. The study revealed that the contents of available phosphate tended to decrease after sod-culture by green manure cultivation and open-pollination, when compared to the level before cultivation. The ratio soil porosity increased by approximately 30% when Crotalaria juncea and Sorghum bicolar L. Moench were cultivated, while the soil bacteria and fungi also increased. In a research on microfauna using a pit fall trap, the population number of the microfauna was 174 of 27 species in the plot of open-pollinated sod-culture and no organic matter application, and 268 of 26 species in the plot of Sorghum bicolar L. Moench. Consequently, the culturing tool of Crotalaria juncea recorded the highest level of species diversity at 2.5, the evenness index at 3.7 and richness at 4.6, with the lowest level of a dominance index. The ecological quotient of microfauna was 0.76 in the plot of Sorghum bicolar L. Moench, and 0.63 in the plot of Crotalaria juncea.