• Title/Summary/Keyword: propellers

Search Result 248, Processing Time 0.03 seconds

Performance and Airloads Analyses for a Rigid Coaxial Rotor of High-Speed Compound Unmanned Rotorcrafts (고속 비행 복합형 무인 회전익기의 강체 동축반전 로터의 성능 및 공력 하중 해석)

  • Kwon, Young-Min;Park, Jae-Sang
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.311-318
    • /
    • 2020
  • This study investigates the performance and blade airloads for a rigid coaxial rotor of high-speed compound unmanned rotorcrafts. The present compound unmanned rotorcraft uses not only a rigid coaxial rotor, but also wings and propellers for high-speed flights. For the rigid coaxial rotor in this work, CAMRAD II, a rotorcraft comprehensive analysis code, is used to study the performance at a flight speed of up to 250 knots and blade section lift forces at 230 knots. As the flight speed increases, the rotor power decreases; however, the power of propellers increases to overcome the drag force of a rotorcraft in high-speed flight. The effective lift-to-drag ratio of a rotor has the maximum value of about 11.6 which is much higher than the value of the conventional helicopter. The blade section lift forces of the upper and lower rotors at 230 knots show the similar variation trends for one rotor revolution, and the impulses because of the aerodynamic interaction between both rotors are observed.

A numerical study on the correlation between the evolution of propeller trailing vortex wake and skew of propellers

  • Wang, Lian-Zhou;Guo, Chun-Yu;Su, Yu-Min;Wu, Tie-Cheng
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.2
    • /
    • pp.212-224
    • /
    • 2018
  • The characteristics of the relationship between the evolution of propeller trailing vortex wake and skew angle are numerically examined based on four different five-blade David Taylor Model Basin (DTMB) model propellers with different skew angles. Numerical simulations are based on Reynolds-averaged Naviere-Stokes (RANS) equations combined with SST $k-{\omega}$ turbulence model. Results show that the contraction of propeller trailing vortex wake can be restrained by increasing skew angle and loading conditions, and root vortices fade away when the propeller skew angle increases. With the increase of the propeller's skew angle, the deformation of the hub vortex and destabilization of the tip vortices are weakening gradually because the blade-to-blade interaction becomes weaker. The transition trailing vortex wake from stability to instability is restrained when the skew increases. Furthermore, analyses of tip vortice trajectories show that the increasing skew can reduce the difference in trailing vortex wake contraction under different loading conditions.

Development of Mission Analysis Tool for eVTOL Aircrafts of Lift-Tilt Concept (Lift-Tilt 개념의 eVTOL 항공기 임무 분석 도구 개발)

  • Paek, Seung-Kil;Chae, Sanghyun;Kang, Hee Jung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.10
    • /
    • pp.859-870
    • /
    • 2021
  • KARI (Korea Aerospace Research Institute) is developing a design framework for the concept and preliminary design of eVTOL aircrafts. A low fidelity mission analysis tool was developed for the eVTOL aircrafts of Lift-Tilt Concept, which have tilt propellers and lift propellers, using open source SUAVE package. For its development, a review for the propeller performance analysis functionality was made. To find the trim solution at each mission segment automatically, an algorithm is implemented, using a global optimization technique through parallel processings and DOE(design of experiment). Using the tool, the one seated eVTOL OPPAV(optionally piloted personal air vehicle) was modeled and evaluated, which results were compared with the preliminary design data.

Study on estimation of propeller cavitation using computer vision (컴퓨터 비전을 이용한 프로펠러 캐비테이션 평가 연구)

  • Taegoo, Lee;Ki-Seong, Kim;Ji-Woo, Hong;Byoung-Kwon, Ahn;Kyung-Jun, Lee
    • Journal of the Korean Society of Visualization
    • /
    • v.20 no.3
    • /
    • pp.128-135
    • /
    • 2022
  • Cavitation occurs inevitably in marine propellers rotating at high speed in the water, which is a major cause of underwater radiated noise. Cavitation-induced noise from propellers rotating at a specific frequency not only reduces the sonar detection capability, but also exposes the ship's location, and it causes very fatal consequences for the survivability of the navy vessels. Therefore cavity inception speed (CIS) is one of the important factors determining the special performance of the ship. In this study, we present a method using computer vision that can detect and quantitatively estimate tip vortex cavitation on a propeller rotating at high speed. Based on the model test results performed in a large cavitation tunnel, the effectiveness of this method was verified.

Development of Endurance Estimation Method for Multicopters Using Propeller Database (프로펠러 성능 시험 데이터베이스를 활용한 멀티콥터 체공시간 예측방법 개발)

  • Choi, Inseo;Han, Cheolhuei
    • Journal of Institute of Convergence Technology
    • /
    • v.11 no.1
    • /
    • pp.33-37
    • /
    • 2021
  • The application of multicopters using a battery is limited by the short endurance due to the low energy density. A propeller is one of crucial components that determine the performance of the multicopter. In the present study, a systematic method for predicting the endurance of multicopters is described. Propeller performance database are constructed using the data from UIUC Propeller Data Site. Using the 'trendline' function of MS Excel software, the performance of the commercial propellers are represented as a function of polynomials. The multicopter's endurance is computed iteratively using Peukert's Law and considering the voltage drop effect. We evaluated the endurance of multicopters that use commercial propellers. The endurance of the multicopter was within the range of 28 min. to 36 min. It is expected that the present method can be utilized for optimal propeller selection for the given multicopters.

A Study on the Turning System for Processing a Large Ship Propeller (대형 선박 프로펠러 가공 공정용 터닝 시스템에 관한 연구)

  • Do-Hun Chin
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.5
    • /
    • pp.825-831
    • /
    • 2023
  • The propellers used for big ships have a large diameter and are very heavy. In order to apply a precise and safe work process to them, it is necessary to use an exclusive turning system. For this reason, various techniques are applied to produce them. However, workers' convenience and safety are not taken into consideration enough at production sites. Conventionally, these propellers are designed to be separated as their turning system is loaded and rotated by empty weight. Therefore, it is necessary to replace such a design. This study tries to find the weaknesses of the design and structure of a conventional propeller turning system for large ships, to verify structure integrity of a structure in structural analysis, and to devise a plan for designing a new type of turning system. In the basic concept design and structural analysis for the turning system used in the propeller finishing process for large ships, this study drew the following conclusions. It was possible to develop the work process of the turning system for the propeller finishing process used for large ships, to obtain the dimensions for exterior design through a basic design. Structural analysis was conducted to find the structure integrity of the turning system. As a result, in the rail installed to transfer a gantry, the maximum stress was about 45MPa, about 5.5 times lower than the yield strength 250MPa. Therefore, the turning system was judged to be safe structurally.

Thrust and torque prediction of multicopter propeller in hovering based on BET method (BET 기법을 이용한 멀티콥터 프로펠러의 정지비행시 추력 및 토크 계산)

  • Lee, Bumsik;Woo, Heeseung;Lee, Dogyeong;Chang, Kyoungsik;Lee, Dongjin;Kim, Minwoo
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.6
    • /
    • pp.23-31
    • /
    • 2018
  • In the present work, the thrust and torque of multicopter propellers in hovering are predicted based on BET method. The geometry information of the propellers is obtained using a three dimensional scanner and the airfoil section is extracted using CATIA. EDISON CFD is adopted to calculate the drag and lift of airfoil at a given geometry and flow conditions and then thrust is calculated with respect to a given RPMs based on BET. Two simulations with laminar and turbulent flows are considered. The predicted value is compared with the performance data from the Product Company and results from JavaProp software, which is used in the design and prediction of propellers. In the case of a 9-inch propeller, the thrust from the product company is corresponding to the results between the laminar and turbulent flow conditions. In the 16-inch case, the predicted thrust at turbulent flow conditions conformed well with reference one. The predicted torque shows a big difference with the reference data.

Attitude control system implementation for a helicopter propeller setup using TMS320C31 (TMS320C31을 이용한 모형 헬리콥터의 자세제어 시스템 실현)

  • 박기훈;손원기;권오규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.329-332
    • /
    • 1997
  • This paper deals with the attitude control problem of nonlinear MIMO propeller setup. Multivariable GPC[Generalized Predictive Control] is adopted as the main controller, and it is implemented by TMS320C31 in the current paper. The main object of control is to move the propellers to wanted positions. System identification is performed to configure the system. Performance of the multivariable predictive controller implemented is shown via some experiments, which shows the controller meets the adequate control purpose.

  • PDF

Study on the Design of Shaft Strut for Naval Ships with Twin Screw (2축 함정의 스트럿 설계에 관한 고찰)

  • 박명규;신영균
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.8 no.1
    • /
    • pp.81-87
    • /
    • 2002
  • High speed naval ships are configured with open shafts The shafts, bearings, and propellers are supported by shaft struts. Proper design of struts involves issues of structural, vibration, and hydrodynamic analysis and design. Strut arm cavitation in high speed occurs because of a misalignment of the strut arm with the local incident flow. Proper selection of the strut section can minimize the generation of cavitation. This paper describes issues in the design struts and notices based on the design of Patrol Craft and Amphibious Ship.

  • PDF

A Study on an Optimized Constant Pitch Propeller (일정피치 추진기의 최적화 연구에 관하여)

  • 장택수;홍사영
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.3
    • /
    • pp.28-33
    • /
    • 2002
  • Optimization of marine propellers of constant pitch is studied, with the help of the infinite dimensional optimization (Jang and Kinoshita, 2000a), which is based on the Hilbert space theory. As a numerical example, the MAU type propeller is considered and used as he initial guess for the optimization method. The numerical computations for an optimal marine propeller are performed for the constant pitch distribution. In addition, a new optimization is suggested with the constraint of constant pitch during optimization.