• Title/Summary/Keyword: propagations

Search Result 141, Processing Time 0.029 seconds

Characteristics of Premixed Flame Propagations of R134a/Methane in a Constant Volume Combustion Chamber (정적 연소실 내 R134a 및 메탄 예혼합 화염의 전파 특성)

  • Choi, Byung Chul;Park, June Sung
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.85-86
    • /
    • 2014
  • The characteristics of the outward-propagating premixed flames of stoichiometric mixtures of R134a/methane/oxygen/nitrogen have been experimentally investigated in a constant volume combustion chamber. Three regimes of the expanding flames were categorized based on the flame behavior.

  • PDF

A Study of Solid Electron Beam and Slow Wave Hybrid Mode Introduction (원형 전자빔과 지파 하이브리드 모드의 상호연구)

  • Kim, Won-Sop;Kim, Jong-Man
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.392-393
    • /
    • 2009
  • The study is aimed at studying a weakly relativistic oversized BWO with a Bragg reflector entrance of SWS. The Bragg reflector reflects microwaves, while it is open for beam propagations. By changing the boundary condition at the beam entrance, the effect of the Bragg reflector on the BWO performance is examined.

  • PDF

Nondestructive Evaluation of Concrete Members using Impact Echo and SASW Methods (충격반향기법과 표면파기법을 이용한 콘크리트 부재의 비파괴 검사)

  • 김동수;박형춘;이광명
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.164-168
    • /
    • 1995
  • As nation's infrastructure is getting old, nondestructive evaluation of existing structures and construction quality control are getting important. In this paper non-destructive evaluations of concrete members using impact echo and SASW methods are introduced. Both techniques are based on the stress wave propagations. Experimental tests were performed using beam type concrete member where voids and cracks are included. Within reasonable accuracy, void locations were detected using impact echo method and the dynamic modulus of concrete were measured using SASW method. Both NDT methods showed a feasibility for the implementation into quality evaluaton of concrete members in practice

  • PDF

THREE-DIMENSIONAL CRYSTALLIZING $\pi$-BONDINGS AND WEAR OF METALS

  • Oh, Hung-Kuk
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.03a
    • /
    • pp.78-89
    • /
    • 1995
  • Phenomelocial evidences for three-dimensional crystallizing $\pi$-bondings are investigated in case of the soft layer very near the suface of the metal , the surface layer of certain crystaline thermoplastics. the increased contact area of the metalic frictional interface and the delaminated sheet-like wear particles of the metal . The wear mechanisms are the cracks at the boundaries of the grains and their propagations parallel to the surface. The cracks are made by the reorientations of the atoms in the grains and the rotations of the grains.

  • PDF

Rules to control propagations in deriving spatial data models (공간데이터모델 유도에 따른 파급 처리 규칙)

  • 도순희;강혜경;이기준
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10a
    • /
    • pp.94-96
    • /
    • 2001
  • 기존의 대축척 지리정보 데이터베이스로 부터 새로운 소축적 지리정보 데이터베이스를 유도하는 방법 중의 하나는 일반화이다. 이는 대축적 공간데이터를 소축척에 적합하도록 변형시킨다. 즉, 일반화를 통해서 지리정보 데이터의 공간 및 비공간적 특성이 변형되고 그 결과 데이터 모델로 변하게 된다. 본 연구는 이러한 변형에 따른 파급효과를 제어할 수 있는 규칙들을 제시한다. 특히 여섯 가지 일반화 연산자들이 모델에 미치는 영향을 조사하여, 이를 바탕으로 모델 변형을 제어할 수 있는 규칙을 제시하였다.

  • PDF

Evaluation of Microcanonical Rate Constants by Semiclassical Boundary Conditions : Early Asymptotic Analysis

  • Sungyul Lee
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.5
    • /
    • pp.538-541
    • /
    • 1992
  • An approximate scheme for evaluating total reaction probability is proposed. Semiclassical boundary conditions are imposed well before the asymptotic region in the reactant and product channels to calculate the Green's function and its derivatives. Propagations are confined to a limited regime near the activated complex. Calculations are made for one dimensional Eckart barrier model of H + $H_2$ reaction. Implications of the procedure in multi-dimensional systems are discussed.

Vulnerability Assessment for a Complex Structure Using Vibration Response Induced by Impact Load (복합 구조물의 충격 응답 특성을 이용한 취약성 평가 모델 연구)

  • Park, Jeongwon;Koo, Man Hoi;Park, Junhong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.10
    • /
    • pp.1125-1131
    • /
    • 2014
  • This work presents a vulnerability assessment procedure for a complex structure using vibration characteristics. The structural behavior of a three-dimensional framed structure subjected to impact forces was predicted using the spectral element method. The Timoshenko beam function was applied to simulate the impact wave propagations induced by a high-velocity projectile at relatively high frequencies. The interactions at the joints were analyzed for both flexural and longitudinal wave propagations. Simulations of the impact energy transfer through the entire structure were performed using the transient displacement and acceleration responses obtained from the frequency analysis. The kill probabilities of the crucial components for an operating system were calculated as a function of the predicted acceleration amplitudes according to the acceptable vibration levels. Following the proposed vulnerability assessment procedure, the vulnerable positions of a three-dimensional combat vehicle with high possibilities of damage generation of components by impact loading were identified from the estimated vibration responses.

Study on Combustion Performance and Burning Velocity in a Micro Combustor (초소형 연소기에서 연소성능과 연소속도에 대한 연구)

  • Na Hanbee;Lee Dae Hoon;Kwon Sejin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.6 s.237
    • /
    • pp.662-670
    • /
    • 2005
  • The effect of heat loss on combustion performance and burning velocity of micro combustors in various conditions were exploited experimentally. Three different gases were used, and various geometric matrixes were considered to figure out the phenomena of combustion in a micro combustor. The micro combustors used in this study were constant volume combustors and had cylindrical shape. Geometric parameter of combustor was defined as combustor height and diameter. The effect of height was exploited parametrically as 1mm, 2mm and 3 mm and the effect of diameter was parameterized to be 7.5 mm and 15 mm. Three different combustibles which were Stoichiometric mixtures of methane and air, hydrogen and air, and mixture of hydrogen and air with fuel stoichiometry of two were used. By pressure measurement and visualization of flame propagation, characteristic of flame propagation was obtained. Flame propagations which were synchronized with pressure change within combustor were analyzed. From the analysis of images obtained during the flame propagations, burning velocity at each location of flame was obtained. About $7\%$ decrease in burning velocity of $CH_4/Air$ stoichiometric mixture compared with previous a empirical result was observed, and we can conclude that it is acceptable to use empirical equations for laminar premixed flame burning velocity to micro combustions. Results presented in this paper will give fine tool for analysis and prediction of combustion process within micro combustors.

Experimental study on the mechanical property of coal and its application

  • Jiang, Ting T.;Zhang, Jian H.;Huang, Gang;Song, Shao X.;Wu, Hao
    • Geomechanics and Engineering
    • /
    • v.14 no.1
    • /
    • pp.9-17
    • /
    • 2018
  • Brazilian splitting tests, uniaxial compression tests and triaxial compression tests are carried out on the coal samples cored from Shanxi group $II_1$ coal seam of Jiaozuo coal mine, Henan province, China, to obtain their property parameters. Considering the bedding has notable effect on the property parameter of coal, the samples with different bedding angles are prepared. The effects of bedding on the anisotropic characteristics of the coal seam are investigated. A geological geomechanical model is built based on the geology characteristics of the Jiaozuo coal mine target reservoir to study the effects of bedding on the fracture propagations during hydraulic fracturing. The effects of injection pressure, well completion method, in-situ stress difference coefficient, and fracturing fluid displacement on the fracture propagations are investigated. Results show bedding has notable effects on the property parameters of coal, which is the key factor affecting the anisotropy of coal. The hydraulic cracks trends to bifurcate and swerve at the bedding due to its low strength. Induced fractures are produced easily at the locations around the bedding. The bedding is beneficial to form a complicated fracture network. Experimental and numerical simulations can help to understand the effects of bedding on hydraulic fracturing in coalbed methane reservoirs.