• 제목/요약/키워드: proof education

Search Result 290, Processing Time 0.03 seconds

A Study on Proof of Equalities and Inequalities Using Moment of Inertia (관성능률을 이용한 등식 및 부등식의 증명에 대한 연구)

  • Han, In-Ki;Son, Jin-O;Lee, Kwang-Rok;Baek, Soo-Hean;Song, A-Rom;Chung, Ki-Young
    • Communications of Mathematical Education
    • /
    • v.22 no.1
    • /
    • pp.53-63
    • /
    • 2008
  • In this paper we study a new proof method of equalities and inequalities using moment of inertia. We analyze proof method using moment of inertia, and describe how to prove equalities and inequalities using moment of inertia.

  • PDF

유클리드 기하에서 테크놀로지 활용을 바탕으로 설명적 증명의 의미와 그에 따른 학습자료 계발

  • 고상숙
    • Journal for History of Mathematics
    • /
    • v.15 no.1
    • /
    • pp.115-134
    • /
    • 2002
  • The increasing use of computers in mathematics and in mathematics education is strongly reflected in the teaching on Euclid geometry, in particular in the use of dynamic graphics software. This development has raised questions about the role of analytic proof in school geometry. One can sometimes find a proof which is rather more explanatory than the one commonly used. Because we, math educators are concerned with tile explanatory power of the proofs, as opposed to mere verification, we should devise ways to use dynamic software in the use of explanatory proofs.

  • PDF

A PROOF ON POWER-ARMENDARIZ RINGS

  • Kim, Dong Hwa;Ryu, Sung Ju;Seo, Yeonsook
    • Korean Journal of Mathematics
    • /
    • v.21 no.1
    • /
    • pp.29-34
    • /
    • 2013
  • Power-Armendariz is a unifying concept of Armendariz and commutative. Let R be a ring and I be a proper ideal of R such that R/I is a power-Armendariz ring. Han et al. proved that if I is a reduced ring without identity then R is power-Armendariz. We find another direct proof of this result to see the concrete forms of various kinds of subsets appearing in the process.

A PROOF OF THE MOST IMPORTANT IDENTITY INVOLVED IN THE BETA FUNCTION

  • Choi, June-Sang
    • The Pure and Applied Mathematics
    • /
    • v.4 no.1
    • /
    • pp.71-76
    • /
    • 1997
  • A new proof of the well-known identity involved in the Beta function B(p, q) is given by using the theory of hypergeometric series and a brief history of Gamma function is also provided. The method here is shown to be able to apply to evaluate some definite integrals.

  • PDF

A SIMPLE PROOF OF QUOTIENTS OF THETA SERIES AS RATIONAL FUNCTIONS OF J

  • Choi, SoYoung
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.24 no.4
    • /
    • pp.919-920
    • /
    • 2011
  • For two even unimodular positive definite integral quadratic forms A[X], B[X] in n-variables, J. K. Koo [1, Theorem 1] showed that ${\theta}_A(\tau)/{\theta}_B(\tau)$ is a rational function of J, satisfying a certain condition. Where ${\theta}_A(\tau)$ and ${\theta}_B(\tau)$ are theta series related to A[X] and B[X], respectively, and J is the classical modular invariant. In this paper we give a simple proof of Theorem 1 of [1].

An Analysis of Students' Understanding of Mathematical Concepts and Proving - Focused on the concept of subspace in linear algebra - (대학생들의 증명 구성 방식과 개념 이해에 대한 분석 - 부분 공간에 대한 증명 과정을 중심으로 -)

  • Cho, Jiyoung;Kwon, Oh Nam
    • School Mathematics
    • /
    • v.14 no.4
    • /
    • pp.469-493
    • /
    • 2012
  • The purpose of this study is find the relation between students' concept and types of proof construction. For this, four undergraduate students majored in mathematics education were evaluated to examine how they understand mathematical concepts and apply their concepts to their proving. Investigating students' proof with their concepts would be important to find implications for how students have to understand formal concepts to success in proving. The participants' proof productions were classified into syntactic proof productions and semantic proof productions. By comparing syntactic provers and semantic provers, we could reveal that the approaches to find idea for proof were different for two groups. The syntactic provers utilized procedural knowledges which had been accumulated from their proving experiences. On the other hand, the semantic provers made use of their concept images to understand why the given statements were true and to get a key idea for proof during this process. The distinctions of approaches to proving between two groups were related to students' concepts. Both two types of provers had accurate formal concepts. But the syntactic provers also knew how they applied formal concepts in proving. On the other hand, the semantic provers had concept images which contained the details and meaning of formal concept well. So they were able to use their concept images to get an idea of proving and to express their idea in formal mathematical language. This study leads us to two suggestions for helping students prove. First, undergraduate students should develop their concept images which contain meanings and details of formal concepts in order to produce a meaningful proof. Second, formal concepts with procedural knowledge could be essential to develop informal reasoning into mathematical proof.

  • PDF

Teaching of the Meaning of Proof Using Historic-genetic Approach - based on Pythagorean Theorem - (역사.발생적 전개를 따른 증명의 의미 지도 - 피타고라스 정리를 중심으로 -)

  • Song, Yeong-Moo;Lee, Bo-Bae
    • School Mathematics
    • /
    • v.10 no.4
    • /
    • pp.625-648
    • /
    • 2008
  • We collected the data through the following process. 36 third-grade middle school students are selected, and we conducted ex-ante interviews for researching how they understand the nature of proof. Based on the results of survey, then we chose two students we took a lesson with the Branford's among the 36 samples. After sampling, historic-genetic geometry education, inspected carefully whether the Branford's method helps the students.

  • PDF

AN ELEMENTARY WAY OF ADDING TWO CANTOR SETS

  • Keum, Jong-Hae
    • Research in Mathematical Education
    • /
    • v.2 no.1
    • /
    • pp.1-4
    • /
    • 1998
  • Let C be the Cantor set. It is well known that C+C = {x+y : $x\;{\in}\;C$, $y\;{\in}\;C$} = [0, 2] and C - C = [-1, 1]. We introduce a fairly elementary method for the proof which also works even for generalized Cantor sets.

  • PDF