• 제목/요약/키워드: proliferating cells

검색결과 255건 처리시간 0.03초

Cancer Metabolism: Fueling More than Just Growth

  • Lee, Namgyu;Kim, Dohoon
    • Molecules and Cells
    • /
    • 제39권12호
    • /
    • pp.847-854
    • /
    • 2016
  • The early landmark discoveries in cancer metabolism research have uncovered metabolic processes that support rapid proliferation, such as aerobic glycolysis (Warburg effect), glutaminolysis, and increased nucleotide biosynthesis. However, there are limitations to the effectiveness of specifically targeting the metabolic processes which support rapid proliferation. First, as other normal proliferative tissues also share similar metabolic features, they may also be affected by such treatments. Secondly, targeting proliferative metabolism may only target the highly proliferating "bulk tumor" cells and not the slowergrowing, clinically relevant cancer stem cell subpopulations which may be required for an effective cure. An emerging body of research indicates that altered metabolism plays key roles in supporting proliferation-independent functions of cancer such as cell survival within the ischemic and acidic tumor microenvironment, immune system evasion, and maintenance of the cancer stem cell state. As these aspects of cancer cell metabolism are critical for tumor maintenance yet are less likely to be relevant in normal cells, they represent attractive targets for cancer therapy.

Disruption of ATP binding destabilizes NPM/B23 and inhibits anti-apoptotic function

  • Choi, Joung-Woo;Lee, Sang-Bae;Ahn, Jee-Yin;Lee, Kyung-Hoon
    • BMB Reports
    • /
    • 제41권12호
    • /
    • pp.840-845
    • /
    • 2008
  • Nucleophosmin/B23, a major nucleolar phosphoprotein, is overexpressed in actively proliferating cells. In this study, we demonstrate that B23 exclusively localizes in the nucleolus, whereas ATP depletion results in the redistribution of B23 throughout the whole nucleus and destabilizes B23 via caspase-3 mediated cleavage. Interestingly, ATP binding precedes PI(3,4,5)P3 binding at lysine 263 and ATP binding mutants fail to restore the anti-apoptotic functions of B23 in PC12 cells. Thus, the ATP-B23 interaction is required for the stability of the B23 protein and regulates cell survival, confining B23 within the nucleolus in PC12 cells.

The use of animal models in rheumatoid arthritis research

  • Jin-Sun Kong;Gi Heon Jeong;Seung-Ah Yoo
    • Journal of Yeungnam Medical Science
    • /
    • 제40권1호
    • /
    • pp.23-29
    • /
    • 2023
  • The pathological hallmark of rheumatoid arthritis (RA) is a synovial pannus that comprises proliferating and invasive fibroblast-like synoviocytes, infiltrating inflammatory cells, and an associated neoangiogenic response. Animal models have been established to study these pathological features of human RA. Spontaneous and induced animal models of RA primarily reflect inflammatory aspects of the disease. Among various induced animal models, collagen-induced arthritis (CIA) and collagen antibody-induced arthritis (CAIA) models are widely used to study the pathogenesis of RA. Improved transplantation techniques for severe combined immunodeficiency (SCID) mouse models of RA can be used to evaluate the effectiveness of potential therapeutics in human tissues and cells. This review provides basic information on various animal models of RA, including CIA and CAIA. In addition, we describe a SCID mouse coimplantation model that can measure the long-distance migration of human RA synoviocytes and cartilage destruction induced by these cells.

Woodchuck Hepatitis Virus Infection

  • 정규식
    • 한국수의병리학회:학술대회논문집
    • /
    • 한국수의병리학회 2002년도 추계학술대회초록집
    • /
    • pp.9-9
    • /
    • 2002
  • Grossly, the liver exhibits marked cirrhotic changes characteristics of the pre-transformation phase of WHV. Microscopically, focal hepatocyte necrosis and inflammatory cells were observed in midzonal and periportal areas. Bridging portal fibrosis produced pseudolobulation due to entrapment of hyperplastic hepatocytes. Biliary hyperplasia, ductal cell proliferation, and increased amounts of fibrous connective tissue expanded portal areas and extended into periportal areas. Myofibroblasts stained positive for -SMA were detected in proliferating fibrotic tissue and sinusoids.

  • PDF

Synthesis of 2-(3'-azido-and 3'-amino-3'-deoxy-$\beta$-D-ribofuranosyl)-thiazole-4- carboxamide

  • Shin, Ji-Hye;Liang, Cheng-Wu;Chun, Moon-Woo
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2-2
    • /
    • pp.184.3-185
    • /
    • 2003
  • Inosine 5'-monophosphate dehydrogenase (IMPDH) is a critical enzyme in the regulation of cell proliferation and differentiation. This enzyme catalyzes the $NAD^+$-dependent oxidation of IMP to XMP, the rate limiting step in de novo biosynthesis of guanine nucleotides. Therefore, the biochemical effect of IMPDH inhibition in sensitive cell types is decrease in intracellular guanine nucleotide levels, and the decrease in cellular GTP and deoxy GTP pool levels blocks DNA and RNA synthesis in rapidly proliferating tumor cells. (omitted)

  • PDF

항암 면역 증강 작용이 있는 인삼 다당체에 의한 cytokine mRNA의 발현 (The Pattern of Cytokine myNA Expression Induced by Polysaccharide from Panax ginseng C. A. Meyer)

  • 김기환;이인란;정인성;정희용;윤연숙
    • Journal of Ginseng Research
    • /
    • 제22권4호
    • /
    • pp.324-330
    • /
    • 1998
  • We Previously reported that Polysaccharide Isolated from panax ginseng C. A. Meyer, stimulates murine splenocytes to proliferate and to be cytotoxic against a wide range of tumor cells in MHC non-restricted manner:) Therefore, we examined the cytokine mRNA expression induced by the ginseng polysaccharide in this paper. This study demonstrates that the ginseng polysaccharide stimulates Thl type cytosine expression such as IL-2 and IFNY, and macrophage type cytokine expression such as IL-lc and GM-CSF in a dose-dependent manner at different time: IL-2 mRNA was induced at 30 min, IL-la, GM-CSF mRNA at 3 hr, IFNY at 6 hr after the ginseng polysaccharide treatment. In contrast with these, Th2 type cytokine expression such as IL-4 and IL-5 was not induced. The generation of the ginseng polysaccharide-activated killer cells which was induced at the optimal doses of 50 pEyml was neutralized in the presence of anti-lL-2, anti-lFNy, anti-IL-l ${\alpha}$ antibodies, showing the importance of these cytokines produced by the ginseng polysaccharide. In flow cytometry analysis, the blastogenesis of IgM+ cells was induced on day 3 and the number of Thy 1.21 cells, CD4+ and CD8+ cells was increased on day 5. The ginseng polysaccharide also induced blastogenesis of T cells. In conclusion, the ginseng polysaccharide may have considerable antitumor immunotherapeutic modality by stimulating the cytokine production from Thl cells and macrophage and by proliferating lymphocytes.

  • PDF

Study on Changes in Endogenous Stem Cells in the Salivary Gland of Streptozotocin-induced Diabetic Rats

  • Jung, Bo Hyun;Lee, Hee Su;Yoo, Ki-Yeon
    • International Journal of Oral Biology
    • /
    • 제42권3호
    • /
    • pp.99-106
    • /
    • 2017
  • Type1 diabetes mellitus (DM) is generally known to be caused by destruction of insulin-producing pancreatic ${\beta}$ cells or an immune-related problem. Polydipsia is a representative symptom of DM, and it has been reported that this condition is closely related to xerostomia and is considered that hyposalivation from the salivary gland results in this phenomenon. Although various studies have reported that induction of diabetes reduces endogenous stem cells in other organs (heart, brain etc.), diabetes-related changes in endogenous stem cells in the salivary gland have not yet been well established. Therefore, in this study, to verify the change in salivary gland stem cells after diabetes, salivary gland tissues in the control and diabetes-induced groups were processed by histochemistry (Masson's trichrome staining) for morphological analysis, TUNEL assay for cell death, and immunohistochemistry (Ki-67 and c-Kit) for cell proliferation and maturation. Diabetes induced by STZ leads to vacuolization, apoptosis, and reduction in proliferating cells/salivary gland stem cells in salivary glands of rats. This result suggests that diabetes may be associated with reduction in salivary gland function such as degeneration and inhibition of regeneration in the salivary gland.

Effects of Chronic Nicotine Administration on Salivary Gland in Mice: Immunohistochemical Study

  • Jung, Jung-Woo;Choi, Jae-Kap;Byun, Jin-Seok
    • Journal of Oral Medicine and Pain
    • /
    • 제39권3호
    • /
    • pp.83-89
    • /
    • 2014
  • Purpose: Chronic nicotine administration induce various effects in whole organs of the body; however, little is known about salivary gland. In the present study, we pursued the links between systemic nicotine and the histomorphological changes of the salivary gland in mice. Methods: Twenty-five C57BL6 mice were allocated into two groups. The control group (n=9) received distilled water only for 8 weeks by gavage. The experimental nicotine group (n=16) was administered nicotine $5{\mu}g/g$ with distilled water. Animals were sacrificed at 8 weeks; then, submandibular glands were excised and processed for histologic evaluation. Volumetric changes in acinar cells were evaluated by H&E staining. The expression of calponin-positive myoepithelial cells and Ki-67-positive proliferating acinar cells were evaluated by immunohistochemistry. Results: The nicotine group showed significantly decreased number of calponin-positive myoepithelial cell process compared with the control group. There were no significant differences in average volume of acinar cell and the number of Ki-67-positive acinar cells between both groups. Conclusions: These findings suggested that chronic nicotine administration may cause decreased function of myoepithelial cells in submandibular glands of mice, and these can partly explain xerostomic conditions in chronic smokers.

Gallic acid caused cultured mice TM4 Sertoli cells apoptosis and necrosis

  • Li, Wanhong;Yue, Xiangpeng;Li, Fadi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권5호
    • /
    • pp.629-636
    • /
    • 2019
  • Objective: The study was designed to determine the cytotoxic effect of gallic acid (GA), obtained by the hydrolysis of tannins, on mice TM4 Sertoli cells apoptosis. Methods: In the present study, non-tumorigenic mice TM4 Sertoli cells were treated with different concentrations of GA for 24 h. After treatment, cell viability was evaluated using WST-1, mitochondrial dysfunction, cells apoptosis and necrosis was detected using JC-1, Hoechst 33342 and propidium iodide staining. The expression levels of Cyclin B1, proliferating cell nuclear antigen (PCNA), Bcl-2-associated X protein (BAX), and Caspase-3 were also detected by quantitative real-time polymerase chain reaction and Western-blotting. Results: The results showed that 20 to $400{\mu}M$ GA inhibited viability of TM4 Sertoli cells in a dose-dependent manner. Treatment with $400{\mu}M$ GA significantly inhibited PCNA and Cyclin B1 expression, however up-regulated BAX and Caspase-3 expression, caused mitochondrial membrane depolarization, activated Caspase-3, and induced DNA damage, thus, markedly increased the numbers of dead cells. Conclusion: Our findings showed that GA could disrupt mitochondrial function and caused TM4 cells to undergo apoptosis and necrosis.