• 제목/요약/키워드: projection ablation

검색결과 12건 처리시간 0.032초

INVAR 마스크 응용 반도체 기판 소재의 고체 UV 레이저 프로젝션 어블레이션 (DPSS UV Laser Projection Ablation of IC Substrates using an INVAR Mask)

  • 손현기;최한섭;박종식
    • 한국레이저가공학회지
    • /
    • 제15권4호
    • /
    • pp.16-19
    • /
    • 2012
  • Due to the fact that the dimensions of circuit lines of IC substrates have been forecast to reduce rapidly, engraving the circuit line patterns with laser has emerged as a promising alternative. To engrave circuit line patterns in an IC substrate, we used a projection ablation technique in which a metal (INVAR) mask and a DPSS UV laser instead of an excimer laser are used. Results showed that the circuit line patterns engraved in the IC substrate have a width of about 15um and a depth of $13{\mu}m$. This indicates that the projection ablation with a metal mask and a DPSS UV laser could feasibly replace the semi-additive process (SAP).

  • PDF

빌드업 필름의 선폭 6㎛급 패턴 가공을 위한 직접식 UV 레이저 프로젝션 애블레이션 (Direct UV laser projection ablation to engrave 6㎛-wide patterns in a buildup film)

  • 손현기;박종식;정수정;신동식;최지연
    • 한국레이저가공학회지
    • /
    • 제17권3호
    • /
    • pp.19-23
    • /
    • 2014
  • To directly engrave circuit-line patterns as wide as $6{\mu}m$ in a buildup film to be used as an IC substrate, we applied a projection ablation technique in which an 8 inch dielectric ($ZrO_2/SiO_2$) mask, a DPSS 355nm laser instead of an excimer laser, a ${\pi}$-shaper and a galvo scanner are used. With the ${\pi}$-shaper and a square aperture, the Gaussian beam from the laser is shaped into a square flap-top beam. The galvo scanner before the $f-{\theta}$ lens moves the flat-top beam ($115{\mu}m{\times}105{\mu}m$) across the 8 inch dielectric mask whose patterned area is $120mm{\times}120mm$. Based on the results of the previous research by the authors, the projection ratio was set at 3:1. Experiments showed that the average width and depth of the engraved patterns are $5.41{\mu}m$ and $7.30{\mu}m$, respectively.

  • PDF

전주금형 제작을 위한 폴리머의 엑시머 레이저 어블레이션 (Excimer Laser Ablation of Polymer for Electroformed Mold)

  • 이제훈;신동식;서정;김도훈
    • 한국정밀공학회지
    • /
    • 제21권12호
    • /
    • pp.13-20
    • /
    • 2004
  • Manufacturing process for the microfluidic device can include such sequential steps as master fabrication, electroforming, and injection molding. The laser ablation using masks has been applied to the fabrication of channels in microfluidic devices. In this study, manufacturing of polymer master and mold insert for micro injection molding was investigated. Ablation of PET (polyethylene terephthalate) by the excimer laser radiation could be used successfully to make three dimensional master fur nickel mold insert. The mechanism fur ablative decomposition of PET with KrF excimer laser $({\lambda}: 248 nm, pulse duration: 5 ns)$ was explained by photochemical process, while ablation mechanism of PMMA (polymethyl methacrylate) is dominated by photothermal process, the .eaction between PC (polycarbonate) and KrF excimer laser beam generate too much su.face debris. Thus, PET was adopted in polymer master for nickel mold insert. Nickel electroforming using laser ablated PET master was preferable for replication method. Finally, it was shown that excimer laser ablation can substitute for X-ray lithography of LIGA process in microstructuring.

니켈 전주도금을 위한 PET의 엑시머 레이저 어블레이션 (The excimer laser ablation of PET for nickel electroforming)

  • 신동식;이제훈;서정;김도훈
    • 한국레이저가공학회지
    • /
    • 제6권2호
    • /
    • pp.35-41
    • /
    • 2003
  • In this study, manufacturing of polymer master and mold insert for micro injection molding was investigated. Ablation by excimer laser radiation could be used successfully to make 3-D microstructure of PET. The mechanism for ablative decomposition of PET with KrF excimer laser(λ: 248nm, pulse duration: 5ns) was explained by photochemical process. And this process showed PET to be adopted in polymer master for nickel mold insert. Nickel electroforming by using laser ablated PET master was preferable for replication method. Finally, it was shown that excimer laser ablation can substitute for X-ray lithography of LIGA process in microstructuring.

  • PDF

Dielectric 마스크 적용 UV 레이저 프로젝션 가공을 이용한 빌드업 필름 내 선폭 10μm급 패턴 가공 연구 (DPSS UV laser projection ablation of 10μm-wide patterns in a buildup film using a dielectric mask)

  • 손현기;박종식;정수정;신동식;최지연
    • 한국레이저가공학회지
    • /
    • 제16권3호
    • /
    • pp.27-31
    • /
    • 2013
  • To engrave high-density circuit-line patterns in IC substrates, we applied a projection ablation technique in which a dielectric ($ZrO_2/SiO_2$) mask, a DPSS UV laser instead of an excimer laser, a refractive beam shaping optics and a galvo scanner are used. The line/space dimension of line patterns of the dielectric mask is $10{\mu}m/10{\mu}m$. Using a ${\pi}$ -shaper and a square aperture, the Gaussian beam from the laser is shaped into a square flap-top beam; and a telecentric f-${\theta}$ lens focuses it to a $115{\mu}m{\times}105{\mu}m$ flat-top beam on the mask. The galvo scanner before the f-${\theta}$ lens moves the beam across the scan area of $40mm{\times}40mm$. An 1:1 projection lens was used. Experiments showed that the widths of the engraved patterns in a buildup film ranges from $8.1{\mu}m$ to $10.2{\mu}m$ and the depths from $8.8{\mu}m$ to $11.7{\mu}m$. Results indicates that it is required to increase the projection ratio to enhance profiles of the engraved patterns.

  • PDF

엑사이머 레이저 응용 기술에 관한 연구(I) (Study on the Application of Exicimer Laser(1))

  • 황경현;윤경구;이성국
    • 연구논문집
    • /
    • 통권25호
    • /
    • pp.115-120
    • /
    • 1995
  • The aim of this project is the development of technology of production of micro mechanical parts. Materials are Cr, pt or film (thickness $1000-3000\AA$) on glass substrate. Method of manufacturing is resistless direct laser ablation based on the projection technology. A source of radiation is KrF excimer laser(248nm), Experiments of threshold energy are carried out and the results are analyzed by SEM.

  • PDF

355nm 파장의 DPSSL을 이용한 폴리머의 3차원 미세 형상 광가공기술 (Three-dimensional micro photomachining of polymer using DPSSL (Diode Pumped Solid State Laser) with 355 nm wavelength)

  • 장원석;신보성;김재구;황경현
    • 한국광학회지
    • /
    • 제14권3호
    • /
    • pp.312-320
    • /
    • 2003
  • 본 연구에서는 355 nm의 파장을 갖는 Nd:YVO$_4$ 3고주파 DPSS 레이저를 이용하여 폴리머의 3차원 미세형상 가공기술을 개발하였다. UV레이저와 폴리머의 어블레이션에 관한 메커니즘을 설명하였으며 비교적 UV영역에서 파장이 긴 355 nm파장의 영역에서는 광열분해 반응으로 가공되고 이에 따른 폴리머의 광학적 특성을 살펴보았다. 광 흡수율 특성이 우수한 폴리머가 광가공 특성이 좋은 것으로 나타났으나 벤젠구조가 많이 포함되어 있는 폴리이미드의 경우는 광분해후 다시 새로운 화학적 결합이 이루어져 가공부 면이 좋지 않은 면을 보였다. 레이저의 다중 주사방식으로 가공하기위하여 표면의 오염이 적은 폴리카보네이트를 시편으로 사용하여 3차원 적으로 모델링한 직경 1 mm와 500 $\mu\textrm{m}$의 마이크로 팬을 가공하였다. 레이저 발진 효율이 높고 유지비가 적은 355 nm의 DPSSL을 이용한 3차원 가공기술의 개발로 향후 저비용으로 빠른 시간에 미세부품을 개발하는 기술에 기여할 것으로 예상된다.