• Title/Summary/Keyword: projectiles

Search Result 116, Processing Time 0.025 seconds

Computation of Dynamic Damping Coefficients for Projectiles using Steady Motions (정상 운동을 이용한 발사체의 동적 감쇠계수 계산)

  • Park,Su-Hyeong;Gwon,Jang-Hyeok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.8
    • /
    • pp.19-26
    • /
    • 2003
  • A steady prediction method of dynamic stability derivatives is presented in the unified framework of the unsteady Euler equations. New approach does not require any modification of the governing equations except addition of non-inertial force terms. The present methods are applied to compute the pitch-damping coefficients using the lunar coning and the lunar helical motions in the Cartesian coordinate frame. The results for the ANSR and the Basic Finner are in good agreement with the PNS data, range data, and the results using the unsteady prediction method. The results show that the steady approach using the unified governing equations in the Cartesian coordinate frame can be successfully applied to predict the pitch-damping coefficients.

The Interior ballistic Properties of non-solvent double based gun propellants (무용제 복기 화포 추진제의 강내탄도 특성)

  • 이정환;권순길;황준식;이해석;김구일;최병오
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.47-50
    • /
    • 2003
  • JA2 Propellants, made by non-solvent process, are of great interest for the tank gun propellant. This is due to high energy. The grain geometries of JA2 and modified JA2 propellant were designed for application to 105mm APFSDS projectile. The combustion, thermochemical, and interior ballistic properties of the propellant were tested and calculated. The performances of the propellant were evaluated out using 105mm slug T2 projectiles and 105mm tank gun. The muzzle velocity of the propellants was higher than that of the KM30 for K274 projectile.

  • PDF

A Study on the fracture behavior of surface hardening treated aluminum alloy under the high velocity impact (고속충격을 받는 표면처리된 알루미늄 합금의 거동에 관한 연구)

  • 손세원;김희재;황도연;홍성희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.784-789
    • /
    • 2001
  • In order to investigate the fracture behaviors(penetration modes) and the resistance to penetration during ballistic impact of cold-rolled Al 5052 H34 alloy laminates, anodized Al 5052 H34 alloy laminates, and Al 5052 H34 alloy after cold-rolling, ballistic testing was conducted. In general, superior armor material is brittle materials which have a high hardness. Ballistic resistance of these materials was measured by protection ballistic limit(V50), a statical velocity with 50% probability for incomplete penetration. Fracture behaviors and ballistic tolerance, described by penetration modes, are observed respectfully, resulting from V50 test and Projectile Through Plate(PTP) test at velocities greater than V50. PTP tests were conducted with 0$^{\circ}$obliquity at room temperature using 5.56mm ball projectile. V50 tests with 0$^{\circ}$obliquity at room temperature were also conducted with projectiles that were able to achieve near or complete penetration during PTP tests. Surface Hardness, resistance to penetration, and penetration modes of Al 5052 H34 alloy laminates compared to those of cold-rolled Al 5052 H34 alloy laminates and anodized Al 5052 H34 alloy laminates anodized Al 5052 H34 alloy after cold-rolling.

  • PDF

A Study on the ballistic performance and fracture mode of anodized Aluminum 5052-H34 alloy laminates (알루미늄 5052-H34 합금 적층재의 방탄성능과 파괴모드에 관한 연구)

  • 손세원;김희재;박영의;홍성희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.507-512
    • /
    • 2000
  • The ob.jective of this study is to determine fracture behaviors(penetrati0n modes) and resistance to penetration duringballistic impact of Al 5052-H34 alloy laminates and anodized Al 5052-H34 alloy laminates. Resistance to penetration is determined by $V_{50}$ ballistic limit, a statical velocity with 50% probability for complete penetration, test method. Fracture behaviors and ballistic tolerance, described by penetration modes, are respectfully observed that result from V50 test and Projectile Through Plates (PTP) test at velocities greater than $V_{50}$. PTP tests were conducted with 0" obliquity at room temperature using 5.56mm ball projectile. $V_{50}$ tests with 0" obliquity at room temperature were conducted with projectiles that were able to achieve near or complete penetration during PTP tests. Surface Hardness, resistance to penetration, and penetration modes of A1 5052-H34 alloy laminates compared to those of anodized Al 5052-H34 alloy laminates.y laminates.

  • PDF

A Study on the ballistic impact resistance and dynamic failure behavior of aramid FRMLs by high velocity impact (고속충격에 의한 아라미드 섬유강화 금속적층재의 방탄성능 및 동적파손거동에 관한 연구)

  • 손세원;이두성;김동훈;홍성희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.527-532
    • /
    • 2000
  • The armor composite material targets such as aramid FRMLs with different type and ply number of face material and different type of back-up material, were studied to determine ballistic impact resistance and dynamic failure behavior during ballistic impact. Ballistic impact resistance is determined by $\textrm{V}_{50}$ ballistic limit, a statical velocity with 50% probability for complete penetration, test method. Also dynamic failure behaviors are respectfully observed that result from $\textrm{V}_{50}$ tests. $\textrm{V}_{50}$ tests with $0^{\circ}$ obliquity at room temperature were conducted with projectiles that were able to achieve near or complete penetration during high velocity impact tests. As a result, ballistic impact resistance of anodized Al 5052-H34 alloy(2 ply) is better than that of anodized Al 5052-H34 alloy(1 ply), but Titanium alloy showed the similar ballistic impact resistance. In the face material, ballistic impact resistance of titanium alloy is better than that of anodized Al 5052-H34 alloy. In the back-up material, ballistic impact resistance of T750 type aramid fiber is better than that of CT709 type aramid fiber.

  • PDF

Laminate composites behavior under quasi-static and high velocity perforation

  • Yeganeh, E. Mehrabani;Liaghat, G.H.;Pol, M.H.
    • Steel and Composite Structures
    • /
    • v.22 no.4
    • /
    • pp.777-796
    • /
    • 2016
  • In this paper, the behavior of woven E-glass fabric composite laminate was experimentally investigated under quasi-static indentation and high velocity impact by flat-ended, hemispherical, conical (cone angle of $37^{\circ}$ and $90^{\circ}$) and ogival (CRH of 1.5 and 2.5) cylindrical perforators. Moreover, the results are compared in order to explore the possibility of extending quasi-static indentation test results to high velocity impact test results in different characteristics such as perforation mechanisms, performance of perforators, energy absorption, friction force, etc. The effects of perforator nose shape, nose length and nose-shank connection shapes were investigated. The results showed that the quasi-static indentation test has a great ability to predict the high velocity impact behavior of the composite laminates especially in several characteristics such as perforation mechanisms, perforator performance. In both experiments, the highest performance occurs for 2.5 CRH projectile and the lowest is related to blunt projectiles. The results show that sharp perforators indicate lower values of dynamic enhancement factor and the flat-ended perforator represents the maximum dynamic enhancement factor among other perforators. Moreover, damage propagation far more occurred in high velocity impact tests then quasi-static tests. The highest damage area is mostly observed in ballistic limit of each projectile which projectile deviation strongly increases this area.

An Analysis Study of the Proper Quantity of Conditioning Rounds at the Acceptance Test of the Propelling Charge (추진장약 수락시험의 적정 점검탄 분석 연구)

  • Na, Tae-Heum
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.615-621
    • /
    • 2011
  • In this paper, the proper quantity of conditioning rounds has been studied using the statistical analysis on the basis of the acceptance test data of K676 and K677 propelling charge for K9 self propelled howitzer. In general, the muzzle velocity of the initial rounds tends to be a little lower than that of the succeeding rounds. The latter rounds are likely to have the constant velocities after firing the appropriate conditioning rounds. The main cause of velocity difference was proved to be the proper quantity of conditioning rounds by doing the correlation analysis among the initial tube temperature, the tube life and the quantity of conditioning rounds. The result of paired t-test shows that two rounds of conditioning projectiles are proved to be enough to maintain the constant velocity in the case of the acceptance test of K676 and K677 propelling charge.

Gyroscopic Stability and Drag Characteristics Study of Canard-Installed Course Correction Munition (조종날개가 장착된 탄도수정탄의 자이로안정성 및 항력 특성 연구)

  • Bae, Ju Hyun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.376-383
    • /
    • 2017
  • This paper describes the gyroscopic stability and the drag characteristics of the smart munition with a course correction fuze(CCF). A ballistic analysis was conducted to figure out the effect of the canards on the gyroscopic stability of the projectile. The analysis used the commercial ammunition performance evaluation software: Projectile Design and Analysis System(PRODAS). In particular, we compared the PRODAS analysis results to real field test results to investigate the influence of the CCF mounted projectile. In addition, some ballistic simulations were carried out to provide the conditions suitable for wind tunnel tests. Experimental results show that the added drag force by the canards is almost uniform regardless of the Mach number when the projectile is at the normal position where the angle of rotation and the angle of attack are both 0 degrees. However, as the angle of attack of the projectile increases, the additional drag force depends on the deflection of the canards.

Development of Magnus Effect Measurement Technique for Spinning Projectile (회전 발사체용 마그너스 효과 특정기법의 개발)

  • Oh, Se-Yoon;Kim, Sung-Cheol;Lee, Do-Kwan;Choi, Joon-Ho;Ahn, Seung-Ki
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.1
    • /
    • pp.79-86
    • /
    • 2007
  • The Magnus effect measurement apparatus was designed and built for spinning wind tunnel model which would simulate the rotation of projectiles. Prior to the high speed test, the ground functional test and the low speed test were carried out in the Agency for Defense Development's Low Speed Wind Tunnel(ADD-LSWT) at spin rates from about 6,000 to 10,000 rpm. Magnus force and moment were measured on the spinning projectile model at velocity of 100 m/s. It was shown that the Magnus force and moment were linear function of spin parameter. The test results were compared with Magnus test run on the same configuration in the Arnold Engineering Development Center's Propulsion Tunnel 4T(AEDC-4T).

Design Study of a Small Scale Soft Recovery System

  • Yoo, Il-Yong;Lee, Seung-Soo;Cho, Chong-Du
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.11
    • /
    • pp.1961-1971
    • /
    • 2006
  • A soft recovery system (SRS) is a device that stops a high speed projectile without damaging the projectile. The SRS is necessary to verify the shock resistant requirements of microelectronics and electro-optic sensors in smart munitions, where the projectiles experience over 20,000 g acceleration inside the barrel. In this study, a computer code for the performance evaluation of a SRS based on ballistic compression decelerator concept has been developed. It consists of a time accurate compressible one-dimensional Euler code with use of deforming grid and a projectile motion analysis code. The Euler code employs Roe's approximate Riemann solver with a total variation diminishing (TVD) method. A fully implicit dual time stepping method is used to advance the solution in time. In addition, the geometric conservation law (GCL) is applied to predict the solutions accurately on the deforming mesh. The equation of motion for the projectile is solved with the four-stage Runge-Kutta time integration method. A small scale SRS to catch a 20 mm bullet fired at 500 m/s within 1,600 g-limit has been designed with the proposed method.