• 제목/요약/키워드: progressive failure

검색결과 413건 처리시간 0.022초

토조실험 장치를 이용한 토사비탈면 표층거동 특성 연구 (A Study for Characterization on Shallow Behavior of Soil Slope by Flume Experiments)

  • 석재욱;박성용;나건하;강효섭
    • 지질공학
    • /
    • 제28권3호
    • /
    • pp.489-499
    • /
    • 2018
  • 본 연구에서는 급경사지 모형토조 실험을 통해 집중강우에 의한 표층거동 특성 및 체적함수비 변화 특성을 분석하였다. 화강암 풍화토를 대상으로 강우강도(100, 200 mm/hr) 및 초기 지반상태(VWC 7, 14, 26%) 조건에 대한 지표변위 및 체적함수비를 측정하고 영상분석을 위해 실험 전 과정을 비디오 카메라로 촬영하였다. 실험결과 표층붕괴는 후퇴성 붕괴, 전진형 붕괴, 국지적 붕괴의 세가지 형태가 주를 이루며, 후퇴성 붕괴와 전진형 붕괴의 경우 토사가 비탈면 하부까지 퇴적되는 특징으로 인해 상대적으로 큰 피해가 발생할 수 있는 것으로 나타났다. 체적함수비는 초기 조건에 관계없이 일정한 값에서 붕괴가 발생하였으며 건기 시의 지반 조건과 자연상태 조건에서는 체적함수비 증가양상을 통해 표층붕괴를 예측가능한 것으로 나타났다. 강우강도가 큰 경우에 전진형 붕괴가 우세하였으며, 일정 수준이상의 강우강도는 습윤전선 전이에 영향을 미치지 않은 것으로 나타났다.

복합재 압력 용기의 신뢰도 예측 (Reliability Evaluation of a Composite Pressure Vessel)

  • 황태경;박재범;김형근;도영대;문순일
    • Composites Research
    • /
    • 제19권3호
    • /
    • pp.7-14
    • /
    • 2006
  • 본 논문에서는 내압 하중을 받는 복합재 압력 용기의 신뢰도를 구하기 위해 확률적 강도 해석이 수행되었다. 이때 확률적 강도 해석은 점진적 파손 모델과 몬테카를로 시뮬레이션으로 구성된 확률 연속 파손 모델과 상용 유한 요소 해석 코드인 ABAQUS가 연계한 형태로서 복잡한 형상 및 경계 조건을 갖는 복합재 구조물의 확률적 파손 해석을 수행하게 된다. 설계확률 변수로서 복합재 층의 각 방향 별 강도가 고려되었다. 최종적으로, 확률 강도 해석을 통해 복합재 압력 용기의 파열 압력 분산 현상이 설명되었고, 복합재 압력 용기의 각 부위별 신뢰도 값이 제시되었다. 양산 중인 복합재 구조물인 경우, 재료 및 제작 공정의 불확실성이 구조물 성능에 미치는 영향이 더욱 커지게 되어 확률 강도 해석을 이용한 구조 설계가 필수적이다.

Prediction of the load-displacement response of ground anchors via the load-transfer method

  • Chalmovsky, Juraj;Mica, Lumir
    • Geomechanics and Engineering
    • /
    • 제20권4호
    • /
    • pp.359-370
    • /
    • 2020
  • Prestressed ground anchors are important structural elements in geotechnical engineering. Despite their widespread usage, the design process is often significantly simplified. One of the major drawbacks of commonly used design methods is the assumption that skin friction is mobilized uniformly along an anchor's fixed length, one consequence of which is that a progressive failure phenomenon is neglected. The following paper introduces an alternative design approach - a computer algorithm employing the load-transfer method. The method is modified for the analysis of anchors and combined with a procedure for the derivation of load-transfer functions based on commonly available laboratory tests. The load-transfer function is divided into a pre-failure (hardening) and a post-failure (softening) segment. In this way, an aspect of non-linear stress-strain soil behavior is incorporated into the algorithm. The influence of post-grouting in terms of radial stress update, diameter enlargement, and grout consolidation is included. The axial stiffness of the anchor body is not held constant. Instead, it gradually decreases as a direct consequence of tensile cracks spreading in the grout material. An analysis of the program's operation is performed via a series of parametric studies in which the influence of governing parameters is investigated. Finally, two case studies concerning three investigation anchor load tests are presented.

사질토지반의 지지력분석을 위한 얕은기초의 파괴거동에 대한 모형실험과 유한요소해석 비교 검토 (A Study on Comparison of Finite Element Analysis with Model Test of Shallow Footing Failure for Cohesionless Soil with Non-associated Plasticity and Some Smooth Footing)

  • 김영민;강성귀
    • 한국지반신소재학회논문집
    • /
    • 제9권1호
    • /
    • pp.13-20
    • /
    • 2010
  • 본 연구에서는 얕은기초의 파괴거동과 전체적인 하중-변위 관계를 묘사하는 방법에 대하여 기술하였다. 제안한 방법에 의하여 얕은기초의 최고점 이후의 거동과 점진적인 파괴과정을 비교적 명확히 기술하는 것이 가능함을 보여주었다. 유한요소 수치해석법으로 얕은 기초지반에 대하여 마찰각과 체적팽창각을 달리하여 지지력계수 $N_{\gamma}$을 계산하였다. 일반적으로 적용하는 관련 흐름법칙과 거친 기초조건에 의한 지지력계수 $N_{\gamma}$값은 실제 흙거동인 비관련 흐름법칙과 약간 미끈한 기초조건에 대해서는 불안전한 설계가 되는 것을 보여주었다.

  • PDF

Element loss analysis of concentrically braced frames considering structural performance criteria

  • Rezvani, Farshad Hashemi;Asgarian, Behrouz
    • Steel and Composite Structures
    • /
    • 제12권3호
    • /
    • pp.231-248
    • /
    • 2012
  • This research aims to investigate the structural behavior of concentrically braced frames after element loss by performing nonlinear static and dynamic analyses such as Time History Analysis (THA), Pushdown Analysis (PDA), Vertical Incremental Dynamic Analyses (VIDA) and Performance-Based Analysis (PBA). Such analyses are to assess the potential and capacity of this structural system for occurrence of progressive collapse. Besides, by determining the Failure Overload Factors (FOFs) and associated failure modes, it is possible to relate the results of various types of analysis in order to save the analysis time and effort. Analysis results showed that while VIDA and PBA according to FEMA 356 are mostly similar in detecting failure mode and FOFs, the Pushdown Overload Factors (PDOFs) differ from others at most to the rate of 23%. Furthermore, by sensitivity analysis it was observed that among the investigated structures, the eight-story frame had the most FOF. Finally, in this research the trend of FOF and the FOF to critical member capacity ratio for the plane split-X braced frames were introduced as a function of the number of frame stories.

Simplified robustness assessment of steel framed structures under fire-induced column failure

  • Jiang, Binhui;Li, Guo-Qiang;Yam, Michael C.H.
    • Steel and Composite Structures
    • /
    • 제35권2호
    • /
    • pp.199-213
    • /
    • 2020
  • This paper proposes a Global-Local Analysis Method (GLAM) to assess the progressive collapse of steel framed structures under fire-induced column failure. GLAM obtains the overall structural response by combining dynamic analysis of the heated column (local) with static analysis of the overall structure (global). Test results of two steel frames which explicitly consider the dynamic effect during fire-induced column failure were employed to validate the proposed GLAM. Results show that GLAM gives reasonable predictions to the test frames in terms of both whether to collapse and the displacement verse temperature curves. Besides, several case studies of a two-dimensional (2D) steel frame and a three-dimensional (3D) steel frame with concrete slabs were conducted by using GLAM. Results show that GLAM gives the same collapse predictions to the studied cases with nonlinear dynamic analysis of the whole structure model. Compared with nonlinear dynamic analysis of the whole structure model, GLAM saves approximately 70% and 99% CPU time for the cases of 2D and 3D steel frame, respectively. Results also show that the load level of a structure has notable effects on the restraint condition of a heated column in the structure.

Failure simulation of nuclear pressure vessel under severe accident conditions: Part II - Failure modeling and comparison with OLHF experiment

  • Eui-Kyun Park;Jun-Won Park;Yun-Jae Kim;Yukio Takahashi;Kukhee Lim;Eung Soo Kim
    • Nuclear Engineering and Technology
    • /
    • 제55권11호
    • /
    • pp.4134-4145
    • /
    • 2023
  • This paper proposes strain-based failure model of A533B1 pressure vessel steel to simulate failure, followed by application to OECD lower head failure (OLHF) test simulation for experimental validation. The proposed strain-based failure model uses simple constant and linear functions based on physical failure modes with the critical strain value determined either using the lower bound of true fracture strain or using the average value of total elongation depending on the temperature. Application to OECD Lower Head Failure (OLHF) tests shows that progressive deformation, failure time and failure location can be well predicted.

Progressive Collapse and Seismic Performance of Twisted Diagrid Buildings

  • Kwon, Kwangho;Kim, Jinkoo
    • 국제초고층학회논문집
    • /
    • 제3권3호
    • /
    • pp.223-230
    • /
    • 2014
  • In this study the progressive collapse resisting capacities of tall diagrid buildings were evaluated based on arbitrary column removal scenario, and the seismic load-resisting capacities were investigated through fragility analysis and ATC 63 procedure. As analysis model structures both regular and twisted diagrid structures were designed and their load-resisting capacities were compared by nonlinear static and dynamic analyses. The analysis results showed that the progressive collapse potential of twisted buildings decreased as the twisting angle increased, but the seismic fragility or the probability of failure decreased as the twisting angle increased.

Novel estimation based on a minimum distance under the progressive Type-II censoring scheme

  • Young Eun Jeon;Suk-Bok Kang;Jung-In Seo
    • Communications for Statistical Applications and Methods
    • /
    • 제30권4호
    • /
    • pp.411-421
    • /
    • 2023
  • This paper provides a new estimation equation based on the concept of a minimum distance between the empirical and theoretical distribution functions under the most widely used progressive Type-II censoring scheme. For illustrative purposes, simulated and real datasets from a three-parameter Weibull distribution are analyzed. For comparison, the most popular estimation methods, the maximum likelihood and maximum product of spacings estimation methods, are developed together. In the analysis of simulated datasets, the excellence of the provided estimation method is demonstrated through the degree of the estimation failure of the likelihood-based method, and its validity is demonstrated through the mean squared errors and biases of the estimators obtained from the provided estimation equation. In the analysis of the real dataset, two types of goodness-of-fit tests are performed on whether the observed dataset has the three-parameter Weibull distribution under the progressive Type-II censoring scheme, through which the performance of the new estimation equation provided is examined.

Effect of connection stiffness on the earthquake-induced progressive collapse

  • Ali, Seyedkazemi;Mohammad Motamedi, Hour
    • Earthquakes and Structures
    • /
    • 제23권6호
    • /
    • pp.503-515
    • /
    • 2022
  • Global or partial damage to a structure due to the failure of gravity or lateral load-bearing elements is called progressive collapse. In the present study, the alternate load path (ALP) method introduced by GSA and UFC 4-023-03 guidelines is used to evaluate the progressive collapse in special steel moment-resisting frame (SMRF) buildings. It was assumed that the progressive collapse is due to the earthquake force and its effects after the removal of the elements still remain on the structures. Therefore, nonlinear dynamic time history analysis employing 7 earthquake records is used to investigate this phenomenon. Internal and external column removal scenarios are investigated and the stiffness of the connections is changed from semi-rigid to rigid. The results of the analysis performed in the OpenSees program show that the loss of the bearing capacity of an exterior column due to a seismic event and the occurrence of progressive collapse can increase the inter-story drift of the structure with semi-rigid connections by more than 50% and make the structure unable to satisfy the life safety performance level. Furthermore, connection stiffness severely affects the redistribution of forces and moments in the adjacent elements of the removed column.