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Abstract
This paper provides a new estimation equation based on the concept of a minimum distance between the em-

pirical and theoretical distribution functions under the most widely used progressive Type-II censoring scheme.
For illustrative purposes, simulated and real datasets from a three-parameter Weibull distribution are ana-

lyzed. For comparison, the most popular estimation methods, the maximum likelihood and maximum product of
spacings estimation methods, are developed together. In the analysis of simulated datasets, the excellence of the
provided estimation method is demonstrated through the degree of the estimation failure of the likelihood-based
method, and its validity is demonstrated through the mean squared errors and biases of the estimators obtained
from the provided estimation equation. In the analysis of the real dataset, two types of goodness-of-fit tests are
performed on whether the observed dataset has the three-parameter Weibull distribution under the progressive
Type-II censoring scheme, through which the performance of the new estimation equation provided is examined.

Keywords: Cramer-von Mises distance, maximum product of spacings, progressive Type-II cen-
sored sample, Weibull distribution

1. Introduction

To estimate unknown parameters in a probability distribution, the maximum likelihood estimation
method with useful properties such as consistency and sufficiency may generally be considered. How-
ever, the maximum likelihood estimation method can break down not only for heavy-tailed continuous
distributions with unknown location and scale parameters as discussed in Pitman (1979) but also for
mixtures of continuous distributions as mentioned in Ranneby (1984). The maximum likelihood es-
timation method is also bound to fail for distributions with unknown endpoints and J-shaped density
function as mentioned in Cheng and Amin (1983). Moreover, for a certain three-parameter distribu-
tion where one parameter is an unknown shifted origin, the likelihood can become infinite, and it can
lead to inconsistent estimators of other parameters.

A typical example is a Weibull distribution which is extensively used for reliability analysis. Sup-
pose that a random variable X has the three-parameter Weibull distribution with the following proba-
bility density function (PDF) and cumulative distribution function (CDF)

f (x; µ, σ, λ) = λσ−λ (x − µ)λ−1 e−(
x−µ
σ )λ ,
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and

F (x; µ, σ, λ) = 1 − e−(
x−µ
σ )λ , x > µ, σ > 0, λ > 0, (1.1)

respectively, where µ is the location parameter, σ is the scale parameter, and λ is the shape parameter
that allows various shapes. Then, the Weibull distribution does not satisfy one of the regularity con-
ditions since the domain of the random variable X depends on the location parameter µ (Cousineau,
2009). In particular, the Weibull distribution has the J-shaped density function when the shape param-
eter λ is less than 1, which may yield invalid maximum likelihood estimators (MLEs) or inconsistency
of the MLEs. In addition, the MLEs do not satisfy asymptotic normality when the shape parameter is
between 1 and 2.

Recently, as an alternative to resolving these problems, several methods have been introduced.
In particular, the maximum product of spacings (MPS) estimation method has received considerable
attention because of providing consistent estimators with asymptotic efficiency. The MPS estimation
method was independently introduced by Cheng and Amin (1983) and Ranneby (1984). Moreover,
Cheng and Amin (1983) proved that the MPS estimation method gives consistent and asymptotically
efficient estimators not only when the MLEs exist but also when the maximum likelihood estimation
method is bound to fail, and they argued that the MPS estimators (MPSEs) are as efficient as the MLEs.
Ranneby (1984) studied the MPS estimation method as an approximation of the Kullback-Leibler in-
formation and showed the consistency of the MPSE. In addition, the consistency was generalized by
Ekström (1998). Anatolyev and Kosenok (2005) demonstrated that the MPSE is more efficient than
the MLE in small samples for a heavy tail and/or skewed distribution. Based on this, Singh et al.
(2014) and Singh et al. (2018) applied the MPS estimation method to the generalized inverted expo-
nential and exponentiated Pareto distributions in the case where there is no censoring, respectively,
and they proved the excellence of the MPS estimation method through a simulation. Studies related
to the censoring scheme have also proven the excellence of the MPS estimation method by several au-
thors. Basu et al. (2017) studied the MPS estimation method for the inverse Lindley distribution under
the Type-I censoring scheme. Basu et al. (2018) studied the MPS estimation method for the same dis-
tribution under a progressive hybrid Type-I censoring scheme with the probability of removals. Jeon
et al. (2022) provided the MPSEs for the three-parameter Weibull distribution based on a generalized
Type-II progressive hybrid censored sample.

Another alternative is to use the minimum distance estimation, which finds unknown parameters
where the distance (difference) between the empirical distribution function (EDF) and the theoretical
distribution function is minimized. This approach is especially useful for estimating the location
parameter as well as being closely related to goodness-of-fit tests including Kolmogorov-Smirnov
(K-S), Cramer-von Mises (CVM), and Anderson-Darling (A-D) tests. Successful cases of applying
the minimum distance approach in estimating the location parameter of the probability distributions
have been reported in some literature. Hobbs et al. (1984) studied the minimum distance estimator
(MDE) of the location parameter in a three-parameter gamma distribution using the K-S, CVM, and
A-D distances. Similarly, Hobbs et al. (1985) applied the minimum distance estimation method to
the three-parameter Weibull distribution and stated that it provides a valid approach for s-robust and
s-consistent estimation of the location parameter. Gallagher and Moore (1990) investigated robust
estimating techniques for the location parameter in the three-parameter Weibull distribution.

As mentioned above, the minimum distance estimation method is related to goodness-of-fit tests
such as K-S, CVM, and A-D tests. These goodness-of-fit tests use a statistic based on the distance
between the EDF and the theoretical distribution function, which indicates that the smaller the statistic,
the closer the distance between the two distribution functions is. Among them, the K-S test is the most
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popular goodness-of-fit test based on the EDF, but empirical evidence suggests that the CVM test is
usually more powerful than the K-S test.

Due to this reason, we propose a novel approach based on the CVM distance by incorporating
the minimum distance estimation method into the progressive Type-II censoring scheme that plays a
very important role in planning duration experiments in reliability studies to save time and money.
Moreover, a comparison is made with the maximum likelihood and MPS estimation methods to show
the excellence of the proposed approach.

The rest of the paper is organized as follows. Section 2 provides the minimum distance estimation
method for estimating unknown parameters in the three-parameter Weibull distribution under the pro-
gressive Type-II censoring scheme. Section 3 deploys the maximum likelihood and MPS estimation
methods for comparison with the proposed approach. Section 4 provides two types of goodness-of-fit
tests based on the replicated data and pivotal quantity. Section 5 provides the results of the simulation
and real data analysis, and Section 6 concludes this paper.

2. Minimum distance estimation

The progressive Type-II censoring scheme is explained as follows: In the first failure, R1 units out
of n − 1 survival units are randomly withdrawn (or censored) from the lifetime experiment. In the
same manner, when the next failure occurs, R2 units among the remaining n − 2 − R1 survival units
are randomly withdrawn. This process takes place up to mth failure, and all remaining Rm = n − m −
R1 − · · · −Rm−1 units are censored at the time of the mth failure. Here, R1, . . . ,Rm are fixed. It is worth
noting that it is the complete sample situation for the case m = n where R1 = · · · = Rm = 0, while it is
the conventional Type-II censoring scheme in the case of R1 = · · · = Rm−1 = 0, Rm = n − m.

To obtain the MDE under the progressive Type-II censoring scheme, the CVM distance for the
considered censoring scheme is required. It can be derived by extending the following CVM distance
under the no censoring situation

W2 (θ) = n
∫ ∞

−∞

[Hn (x) − H (x; θ)]2 dH (x; θ) ,

where Hn(x) and H(x; θ) are the EDF and the theoretical distribution function with an unknown pa-
rameter θ, respectively.

Let

X1:m:n ≤ · · · ≤ Xm:m:n (2.1)

be a progressive Type-II censored sample with the censoring scheme R = (R1, . . . ,Rm). The EDF
based on the progressive Type-II censored sample (2.1) stated in Pakyari and Balakrishnan (2012) is
given by

Hm:n (x) =


0, if x < x1:m:n,

pi:m:n, if xi:m:n ≤ x < xi+1:m:n, i = 1, . . . ,m − 1,

pm:m:n, if x ≥ xm:m:n,

where pi:m:n = E(Ui:m:n) = 1 −
∏i

j=1 γ j(1 + γ j)−1 is the mean of the ith order statistic from a standard
uniform distribution with the interval (0, 1) under the progressive Type-II censoring scheme. Here,
γ j =

∑m
k= j(1 + Rk). It is noted that Hm:n(x) , 1 for x ≥ xm:m:n since n−m samples are censored, unlike

the no censoring case.
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Then, the CVM distance can be derived under the progressive Type-II censoring scheme according
to Pakyari and Balakrishnan (2012) as

W2
m:n (θ) = n

m−1∑
i=1

pi:m:n (H (xi+1:m:n; θ) − H (xi:m:n; θ)) (pi:m:n − H (xi+1:m:n; θ) − H (xi:m:n; θ))

+
n
3

(H(xm:m:n; θ))3, (2.2)

where H(xi:m:n; θ) denotes the theoretical distribution function with the progressive Type-II censored
sample. The MDE of the unknown parameter θ can be derived by minimizing the CVM distance (2.2).
That is, θ̂CVM = arg min

θ
W2

m:n(θ). For the three-parameter Weibull distribution with the CDF (1.1), the

CVM distance (2.2) is written as

W2
m:n(µ, σ, λ) = n

m−1∑
i=1

pi:m:n

(
e−zλi:m:n − e−zλi+1:m:n

) (
pi:m:n − 2 + e−zλi+1:m:n + e−zλi:m:n

)
+

n
3

(
1 − e−zλm:m:n

)3
(2.3)

by letting Zi:m:n = (Xi:m:n − µ)/σ. To obtain the MDEs of µ, σ, and λ from the CVM distance (2.3),
two types of algorithms are applied: One is the algorithm introduced by Hobbs et al. (1985), and
the other is the algorithm introduced by Hooke and Jeeves (1961). The former algorithm proceeds as
follows: First, µ is estimated by minimizing W2

m:n(µ, σ̂MLE, λ̂MLE), where σ̂MLE and λ̂MLE are the MLEs
of σ and λ, respectively. Then, σ and λ are re-estimated using the maximum likelihood estimation
method provided in Section 3, given the MDE of µ. The resulting estimators are denoted as µ̂CVM1,
σ̂CVM1, and λ̂CVM1. The latter is the derivative-free algorithm without requiring the derivative to find
unknown parameters where the given function is minimized. The resulting estimators are denoted as
µ̂CVM2, σ̂CVM2, and λ̂CVM2.

3. Classical estimation

For comparison with the proposed approach, this section provides the maximum likelihood estimation
method as well as the MPS estimation method which gives consistent and asymptotically efficient
estimators.

The MLEs µ̂MLE, σ̂MLE, and λ̂MLE can be found by maximizing the natural logarithm of the like-
lihood function based on the progressive Type-II censored sample (2.1), given by

L (µ, σ, λ) = C
m∏

i=1

f (xi:m:n; µ, σ, λ)
[
1 − F (xi:m:n; µ, σ, λ)

]Ri

∝ λmσ−λme−
∑m

i=1(1+Ri)zλi:m:n

m∏
i=1

(xi:m:n − µ)λ−1,

where C = n(n − 1 − R1) · · · (n − m + 1 − R1 − · · · − Rm−1).
To derive the MPSE, assume that the PDF h(x; θ) corresponding to the CDF H(x; θ) is absolutely

positive in the interval (a, b) and 0 elsewhere. Additionally, let x1 < · · · < xn be an ordered random
sample. According to Cheng and Amin (1983), in any continuous univariate distribution, the MPSE
of the unknown parameter θ is derived by maximizing the geometric mean of the spacings defined
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as G(θ) = (
∏n+1

i=1 S i(θ))1/(n+1), where S i(θ) = H(xi; θ) − H(xi−1; θ), i = 1, . . . , n + 1, x0 ≡ a and
xn+1 ≡ b under the no censoring situation. However, since censoring can occur by various causes, a
new product of spacings function is required to obtain an appropriate MPSE.

For the progressive Type-II censoring scheme, the sample information induces the partitions in the
interval (0,∞) as follows: (0, x1:m:n], (x1:m:n, x2:m:n], . . . , (xm:m:n,∞). Based on the partition (xi−1:m:n,
xi:m:n], the spacing is given by S i:m:n(θ) = H(xi:m:n; θ) − H(xi−1:m:n; θ), i = 1, . . . ,m with H(x0:m:n; θ) =

0. However, the spacing should be modified because Ri units are removed at xi:m:n. Moreover, the
information of Ri censored units may be considered as ties in terms of the survival function (1 −
H(xi:m:n; θ)), assigning the same probability to Ri units by the idea of Shao and Hahn (1999). Using
this fact, the product of spacings function based on the progressive Type-II censored sample (2.1) is
derived as

G∗ (θ) =

m∏
i=1

S i:m:n (θ)
[
1 − H (xi:m:n; θ)

Ri

]Ri

. (3.1)

Then, for the three-parameter Weibull distribution, the MPSEs µ̂MPS, σ̂MPS, and λ̂MPS are derived by
maximizing the natural logarithm of the product of spacings function (3.1), given by

log G∗ (µ, σ, λ) ∝
m∑

i=1

log
(
e−zλi−1:m:n − e−zλi:m:n

)
−

m∑
i=1

Rizλi:m:n.

4. Goodness-of-fit test

The validity of the proposed method can be demonstrated through the goodness-of-fit test of the
observed progressive Type-II censored sample. This section provides two approaches, which are
based on the techniques introduced by Seo et al. (2020).

The provided goodness-of-fit test methods are applied to real data analysis to illustrate in Section
5.2.

4.1. Replicated data-based

Let Xrep be a replicated data which means a replication of an observed data x. Then, the replicated
data Xrep is generated from the distribution p(xrep|x, θ̃) that is a fitted model with the observed data x
and an estimator θ̃. This indicates that the replicated data is very similar to the observed data if the
fitted model has a high goodness-of-fit. Here, the degree of the goodness-of-fit depends on how close
the true value of the parameter to be estimated and an estimated value of the parameter are.

Under the progressive Type-II censoring scheme, the replicated data is denoted as Xrep
i:m:n, and it

is randomly generated from the fitted model p(xrep
i:m:n|xi:m:n, θ̃). Then, the goodness-of-fit test can be

performed by plotting the scatter plot between the observed progressive Type-II censored sample
{x1:m:n, . . . , xm:m:n} and the expectation of the replicated data

E
(
Xrep

i:m:n

)
=

1
N

N∑
k=1

Xrep,k
i:m:n, i = 1, . . . ,m,

where N denotes the number of the replicated data generated. If the points are close to a straight line in
the scatter plot, then it indicates that a correlation between the observed progressive Type-II censored
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Figure 1: The MSEs and biases of the estimators for the sample size (a) n = 20, (b) n = 30.

sample and the expectation of the replicated data is high. Furthermore, to examine the uncertainty,
the 100(1 − α)% predictive region for Xrep

i:m:n is computed, which is given by

(
Xrep,([(α/2)N])

i:m:n , Xrep,([(1−α/2)N])
i:m:n

)
,

where Xrep,([αN])
i:m:n denotes the [αN]th smallest of {Xrep,k

i:m:n}.
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Figure 2: Boxplots for the estimates of σ for the sample size (a) n = 20, (b) n = 30.

4.2. Pivotal-based

Let

Qi:m:n = − log [1 − H (xi:m:n; θ)], i = 1, . . . ,m. (4.1)

Then, it is a progressive Type-II censored sample having a standard exponential distribution with a
mean E(Qi:m:n) =

∑i
j=1 1/γ j. Note that it is a pivotal quantity because its distribution does not depend

on the unknown parameter θ. Then, by plotting the scatter plot between the pivotal quantity qi:m:n and
its mean E(Qi:m:n), the goodness-of-fit test can be conducted. The corresponding algorithm can be
summarized as follows:

(a) Estimate the unknown parameter θ.

(b) Compute qi:m:n for i = 1, . . . ,m from (4.1).

(c) Plot scatter plot for m pairs

{(q1:m:n, E (Q1:m:n)) , (q2:m:n, E (Q2:m:n)) , . . . , (qm:m:n, E (Qm:m:n))}.

5. Application

In this section, to examine the performance of the estimation methods discussed in Sections 2 and 3,
the Monte Carlo simulations and the real data analysis are conducted.

5.1. Simulation result

As mentioned earlier, the maximum likelihood estimation method can break down for λ < 1 in the
three-parameter Weibull distribution. To resolve this problem, the minimum distance estimation
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Table 1: Breaking strength of jute fiber at gauge length 20 mm
71.46 419.02 284.64 585.57 456.60 113.85 187.85 688.16 662.66 45.58 578.62 756.70 594.29 166.49 99.72
707.36 765.14 187.13 145.96 350.70 547.44 116.99 375.81 581.60 119.86 48.01 200.16 36.75 244.53 83.55

Table 2: Progressive Type-II censored sample generated from the breaking strength dataset
i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

xi:15:30 0.3675 0.4558 0.4801 0.7146 0.8355 0.9972 1.1385 1.1699 1.1986 1.6649 1.8713 1.8785 2.0016 3.5070 4.1902
Ri 0 0 0 0 0 2 2 2 2 2 0 0 0 0 5

method is developed, and its excellence can be demonstrated through the Monte Carlo simulation.
For the simulation, the unknown parameters µ, σ, and λ of the three-parameter Weibull distribution
are assigned 0, 1, and 0.5, respectively. Then, to generate the progressive Type-II censored sample,
the following censoring schemes are employed:

Scheme I : R =
(
0∗m−1, n − m

)
,

II : R =
(
n − m, 0∗m−1

)
,

III : R =

(n − m
2

, 0∗m−2,
n − m

2

)
,

IV : R =
(
0∗

m
2 −1, n − m, 0∗

m
2

)
.

Here, 0∗m−1 denotes a vector of zeros of the size m − 1. The mean squared errors (MSEs) and biases
are obtained from 5,000 replications for each censoring scheme.

The results are reported in Figure 1, and it is summarized as follows: For µ, the MSEs and biases of
all estimators have values close to zero, which indicates that they have very satisfactory performance.
For λ, λ̂CVM2 has generally more efficient bias than the MLE counterpart in the censoring schemes II
and III, while λ̂MLE has generally more efficient MSE than other estimators for λ. For σ, σ̂CVM1 has
generally more efficient bias than the MLE and MPS counterparts, while σ̂MLE often yields absurd
MSE values for m = 12 compared to other estimators for σ. In addition, σ̂CVM2 is expected to have
stable performance as the MSE and bias values are very close to zero. To verify this, the boxplots
for all estimates of σ used to calculate the MSE and bias in Figure 1 are presented in Figure 2. As
expected, Figure 2 shows that σ̂CVM2 is very stable with a small deviation, while σ̂MLE is often much
larger than the true value 1 with a big deviation.

In conclusion, the maximum likelihood estimation method yields absurd MSE values for σ, while
the MLE of λ has generally more efficient MSE than other estimators. However, the maximum likeli-
hood estimates of µ, σ, and λ are simultaneously obtained using a numerical optimization method, so
they affect each other. Based on this fact, it is questionable whether the MSE values for the MLE of λ
are reliable.

5.2. Real data

Jute fiber is an environmentally friendly natural fiber that can be used as a good alternative in the
reinforcement of composite materials, but it exhibits brittle. So, strength reliability is one of the
critical factors to restrict the broader use of jute fiber, and the strength dataset is often characterized
by the Weibull distribution.

This subsection considers the dataset on the breaking strength of jute fiber at gauge length 20 mm
reported by Xia et al. (2009) to illustrate the real dataset application of the proposed approach. For the
analysis, the dataset is divided by 100, then the progressive Type-II censored samples are generated
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Table 3: Estimates of µ, σ, and λ for the breaking strength dataset

µ̂MLE µ̂MPS µ̂CVM1 µ̂CVM2 σ̂MLE σ̂MPS σ̂CVM1 σ̂CVM2 λ̂MLE λ̂MPS λ̂CVM1 λ̂CVM2
0.367 0.305 0.367 0.365 6.528 3.168 3.714 3.605 0.336 0.860 0.664 0.791

µ̂MLE, σ̂MLE, and λ
^

MLE µ̂MPS, σ̂MPS, and λ
^

MPS µ̂CVM1, σ̂CVM1, and λ
^

CVM1 µ̂CVM2, σ̂CVM2, and λ
^

CVM2
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Figure 3: 95% predictive regions for Xrep
i:m:n and the scatter plots between the progressive Type-II censored sample
xi:m:n and the expectation E(Xrep

i:m:n).

by setting m = 15 with the censoring scheme R = (0∗5, 2∗5, 0∗4, 5). The breaking strength dataset and
the progressive Type-II sample are reported in Tables 1 and 2, respectively. Furthermore, the analysis
results are reported in Table 3.

To examine that the progressive Type-II censored sample reported in Table 2 has the three-parameter
Weibull distribution, two types of goodness-of-fit tests described in Section 4 are conducted. In the
case of the replicated data, the expectation E(Xrep

i:m:n) and 95% predictive region are obtained based
on the 20,000 replicated data. These results are reported in Figure 3, which reveals that the progres-
sive Type-II censored sample reported in Table 2 has the three-parameter Weibull distribution well
for all estimates because the points are close to a straight line. In addition, the MLEs have the worst
performance in terms of the uncertainty due to a big predictive region.

Figure 4 plots the relationship between the pivotal quantity qi:m:n and its mean E(Qi:m:n) for i =

1, . . . ,m, which also reveals that the progressive Type-II censored sample reported in Table 2 has the
three-parameter Weibull distribution well for all estimates as in the case of Figure 3. Moreover, it
shows that the MLEs have the worst fit because the points are slightly away from the straight line,
compared to the MPSEs and MDEs.

6. Conclusion

In this study, a minimum distance estimation method was proposed to yield stable estimation re-
sults under the progressive Type-II censoring scheme. This approach was achieved by deriving a
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Figure 4: The scatter plots between the pivotal quantity qi:m:n and its mean E(Qi:m:n).

new estimation equation based on the CVM distance. As an example of practical applications, the
three-parameter Weibull distribution for the progressive Type-II censored sample was assumed, and a
method for estimating unknown parameters was provided based on this.

The robustness and excellence of the proposed method were demonstrated by comparison with
the maximum likelihood and MPS estimation methods through Monte Carlo simulations and analysis
of the breaking strength of jute fiber, especially it showed very stable estimation performance for the
scale parameter, compared to the maximum likelihood estimation method. Furthermore, two types
of goodness-of-fit tests provided were shown that the breaking strength of jute fiber considered is
very well fitted to the three-parameter Weibull distribution under the progressive Type-II censoring
scheme, which reveals the usefulness and applicability of the proposed method.

In conclusion, it can be used as an alternative in various situations where the maximum likelihood
estimation method may fail or the nuisance parameter is an obstacle to estimating the parameter of
interest. Accordingly, the proposed minimum distance estimation method is expected to be applicable
to more general censoring schemes such as hybrid or adaptive censoring schemes in addition to the
progressive Type-II censoring scheme, and additional research on its scalability is being conducted.
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