• Title/Summary/Keyword: progression signal

Search Result 145, Processing Time 0.024 seconds

Recurrence plot entropy for machine defect severity assessment

  • Yan, Ruqiang;Qian, Yuning;Huang, Zhoudi;Gao, Robert X.
    • Smart Structures and Systems
    • /
    • v.11 no.3
    • /
    • pp.299-314
    • /
    • 2013
  • This paper presents a nonlinear time series analysis technique for evaluating machine defect severity, based on the Recurrence Plot (RP) entropy. The RP entropy is calculated from the probability distribution of the diagonal line length in the recurrence plot, which graphically depicts a system's dynamics and provides a global picture of the autocorrelation in a time series over all available time-scales. Results of experimental studies conducted on a spindle-bearing test bed have demonstrated that, as the working condition of the bearing deteriorates due to the initiation and/or progression of structural damages, the frequency information contained in the vibration signal becomes increasingly complex, leading to the increase of the RP entropy. As a result, RP entropy can serve as an effective indicator for defect severity assessment of rolling bearings.

Determination of Optimal Phase Split and Offset for the Synchronization of Traffic Signals in the CBD of Seoul (서울시(市) 신호체제의 적정 phase split 과 연쇄화를 위한 최적 offset)

  • Park, Gyeong-Su
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.3 no.1
    • /
    • pp.49-53
    • /
    • 1977
  • The coordinated control of the traffic signals of adjacent intersections can reduce delays, relative number of stops and congestions in the coordinated traffic area. The road capacity can be increased to a certain extend because the stopping and starting of vehicles facing red traffic lights can be avoided in many instances due to the progression established along an artery. However, if traffic centers or leaves the main flow in irregular volumes on the intermediate road section, a coordination of traffic signals is unnecessary and may even be harmful. Therefore, a computer simulation model to simulate and predict the effectiveness of a synchronized traffic signal system in the CBD of Seoul was developed and alternative policy variables, such as cycle time, offsets, phase splits, to be fed into the simulation model had to be generated. This is a report of (1) the development of a heuristic algorithm for the determination of phase splits when there are amber periods specifically reserved for left turns and (2) the computerization of time-space diagramming.

  • PDF

Cell Cycle Alteration and Apoptosis Induced by Ceramide in IM-9 Cells (IM-9세포에 있어서 세라마이드에 의한 세포주기 변화와 아포프토시스)

  • 윤기호;최관수;김원호;최경희;김미영
    • YAKHAK HOEJI
    • /
    • v.39 no.6
    • /
    • pp.689-694
    • /
    • 1995
  • Sphingolipids play important roles in cell regulation and signal transduction. Recently, a sphinogomyelin cycle has been described in which activation of neutral sphingomyelinase leads to the breakdown of sphingomyelin and the generation of ceramide. Ceramide, in turn, has emerged as a candidate intracellular mediator for the action of certain cell agonists and has multiple biologic actions. Ceramide is a potent suppressor of cell growth and an inducer of apoptosis. The present studies show that exposure of IM-9 cells to ceramide resulted in internucleosomal cleavage of DNA, yielding laddered patterns of oligonucleosomal fragments characteristic of apoptosis. DNA fragmentation induced by ceramide was also confirmed by diphenylamine assay. The effect of ceramide on cell cycle progression was also studied. The addition of ceramide increase G$_{1}$ phase distribution in cell cycle. Cell cycle-related cyclin D$_{1}$ gene expression was decreased in a time-dependent manner. These results suggest that apoptosis induced by ceramide is related to cell cycle associated with the alteration of cell cycle in IM-9 cells.

  • PDF

Role of hydrogen peroxide in Rac1 mediated activation of p70s6k signaling pathway

  • Bae, Gyu-Un;Kwon, Hyoung-Keun;Kim, Gwan-Tae;Kim, Yong-Kee;Yoon, Jong-Woo;Cho, Eun-Jung;Lee, Hyang-Woo;Han, Jeung-Whan
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.222.1-222.1
    • /
    • 2003
  • The signal transduction pathway leading to the activation of the p70s6k plays an important role in the progression of cells from G0/G1 to S phase of the cell cycle but remains incompletely characterized. We investigated the role of the Rho family G protein Rac1 in H2O2-mediated p70s6k activation. Transient expression of a dominant negative mutants of the small GTP-binding proteins Rac1 (Rac1N17) and Cdc42(Cdc42N17) showed reduced levels of slower migration on Western blots of one-dimensional SDS-PAGE in p70s6k and ERK1/2 by PDFG stimulation. (omitted)

  • PDF

Characterization of Acousto-ultrasonic Signals for Stamping Tool Wear (프레스 금형 마모에 대한 음-초음파 신호 특성 분석)

  • Kim, Yong-Yun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.4
    • /
    • pp.386-392
    • /
    • 2009
  • This paper reports on the research which investigates acoustic signals acquired in progressive compressing, hole blanking, shearing and burr compacting process. The work piece is the head pin of the electric connector, whose raw material is the preformed steel bar. An acoustic sensor was set on the bed of hydraulic press. Because the acquired signals include the dynamic characteristics generated for all the processes, it is required to investigate signal characteristics corresponding to unit process. The corresponding dynamic characteristics to the respective process were first studied by analyzing the signals respectively acquired from compressing, blanking and compacting process. The combined signals were then periodically analyzed from the grinding to the grinding in the sound frequency domain and in the ultrasonic wave. The frequency of around 9 kHz in the sound frequency domain was much correlated to the tool wear. The characteristic frequency in the acoustic emission domain between 100 kHz and 500 kHz was not only clearly observed right after tool grinding but its amplitude was also related to the wear. The frequency amplitudes of 160 kHz and 320 kHz were big enough to be classified by the noise. The noise amplitudes are getting bigger, and their energy was much bigger as coming to the next regrinding. The signal analysis was based on the real time data and its frequency spectrum by Fourier Transform. As a result, the acousto-ultrasonic signals were much related to the tool wear progression.

Aquaporin 8 Involvement in Human Cervical Cancer SiHa Migration via the EGFR-Erk1/2 Pathway

  • Shi, Yong-Hua;Tuokan, Talaf;Lin, Chen;Chang, Heng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.15
    • /
    • pp.6391-6395
    • /
    • 2014
  • Overexpression of aquaporins (AQPs) has been reported in several human cancers. Epidermal growth factor receptor (EGFR)-extracellular signal-regulated kinases 1/2 (Erk1/2) are associated with tumorigenesis and cancer progression and may upregulate AQP expression. In this study, we demonstrated that EGF (epidermal growth factor) induces SiHa cells migration and AQP8 expression. Wound healing results showed that cell migration was increased by 2.79-1.50-fold at 24h and 48h after EGF treatment. AQP8 expression was significantly increased (3.33-fold) at 48h after EGF treatment in SiHa cells. An EGFR kinase inhibitor, PD153035, blocked EGF-induced AQP8 expression and cell migration and AQP8 expression was decreased from 1.59-fold (EGF-treated) to 0.43-fold (PD153035-treated) in SiHa. Furthermore, the MEK (MAPK (mitogen-activated protein kinase)/Erk (extracellular signal regulated kinase)/Erk inhibitor U0126 also inhibited EGF-induced AQP8 expression and cell migration. AQP8 expression was decreased from 1.21-fold (EGF-treated) to 0.43-fold (U0126-treated). Immunofluorescence microscopy further confirmed the results. Collectively, our findings show that EGF induces AQP8 expression and cell migration in human cervical cancer SiHa cells via the EGFR/Erk1/2 signal transduction pathway.

Development and Validation of a Machine Learning-based Differential Diagnosis Model for Patients with Mild Cognitive Impairment using Resting-State Quantitative EEG (안정 상태에서의 정량 뇌파를 이용한 기계학습 기반의 경도인지장애 환자의 감별 진단 모델 개발 및 검증)

  • Moon, Kiwook;Lim, Seungeui;Kim, Jinuk;Ha, Sang-Won;Lee, Kiwon
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.185-192
    • /
    • 2022
  • Early detection of mild cognitive impairment can help prevent the progression of dementia. The purpose of this study was to design and validate a machine learning model that automatically differential diagnosed patients with mild cognitive impairment and identified cognitive decline characteristics compared to a control group with normal cognition using resting-state quantitative electroencephalogram (qEEG) with eyes closed. In the first step, a rectified signal was obtained through a preprocessing process that receives a quantitative EEG signal as an input and removes noise through a filter and independent component analysis (ICA). Frequency analysis and non-linear features were extracted from the rectified signal, and the 3067 extracted features were used as input of a linear support vector machine (SVM), a representative algorithm among machine learning algorithms, and classified into mild cognitive impairment patients and normal cognitive adults. As a result of classification analysis of 58 normal cognitive group and 80 patients in mild cognitive impairment, the accuracy of SVM was 86.2%. In patients with mild cognitive impairment, alpha band power was decreased in the frontal lobe, and high beta band power was increased in the frontal lobe compared to the normal cognitive group. Also, the gamma band power of the occipital-parietal lobe was decreased in mild cognitive impairment. These results represented that quantitative EEG can be used as a meaningful biomarker to discriminate cognitive decline.

RNA polymerase I subunit D activated by Yin Yang 1 transcription promote cell proliferation and angiogenesis of colorectal cancer cells

  • Jianfeng Shan;Yuanxiao Liang;Zhili Yang;Wenshan Chen;Yun Chen;Ke Sun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.28 no.3
    • /
    • pp.265-273
    • /
    • 2024
  • This study aims to explore possible effect of RNA polymerase I subunit D (POLR1D) on proliferation and angiogenesis ability of colorectal cancer (CRC) cells and mechanism herein. The correlation of POLR1D and Yin Yang 1 (YY1) expressions with prognosis of CRC patients in TCGA database was analyzed. Quantitative realtime polymerase chain reaction (qRT-PCR) and Western blot were applied to detect expression levels of POLR1D and YY1 in CRC cell lines and CRC tissues. SW480 and HT-29 cells were transfected with si-POLR1D or pcDNA3.1-POLR1D to achieve POLR1D suppression or overexpression before cell migration, angiogenesis of human umbilical vein endothelial cells were assessed. Western blot was used to detect expressions of p38 MAPK signal pathway related proteins and interaction of YY1 with POLR1D was confirmed by dual luciferase reporter gene assay and chromatin immunoprecipitation (ChIP). TCGA data showed that both POLR1D and YY1 expressions were up-regulated in CRC patients. High expression of POLR1D was associated with poor prognosis of CRC patients. The results showed that POLR1D and YY1 were highly expressed in CRC cell lines. Inhibition or overexpression of POLR1D can respectively suppress or enhance proliferation and angiogenesis of CRC cells. YY1 inhibition can suppress CRC progression and deactivate p38 MAPK signal pathway, which can be counteracted by POLR1D overexpression. JASPAR predicted YY1 can bind with POLR1D promoter, which was confirmed by dual luciferase reporter gene assay and ChIP. YY1 transcription can up-regulate POLR1D expression to activate p38 MAPK signal pathway, thus promoting proliferation and angiogenesis ability of CRC cells.

Effect of Clitocybin A on the Proliferation of Dermal Papilla Cells (Clitocybin A의 모유두 세포증식 효능)

  • Kang, Jung-Il;Kim, Min-Kyoung;Yoo, Eun-Sook;Yoo, Ick-Dong;Kang, Hee-Kyoung
    • Korean Journal of Pharmacognosy
    • /
    • v.45 no.4
    • /
    • pp.288-293
    • /
    • 2014
  • The present study was conducted to evaluate the hair growth-promoting effect of Clitocybin A from mushroom Clitocybe aurantiaca with dermal papilla cells (DPCs), which play important roles in the regulation of hair cycle. Clitocybin A significantly increased the proliferation of immortalized rat vibrissa DPCs. Flow cytometry analysis revealed that Clitocybin A promoted cell-cycle progression through G0/G1 to S phase in immortalized rat vibrissa DPCs. In addition, Clitocybin A increased the level of cell cycle proteins such as cyclin D1, phospho-pRB, and phospho-CDK2. To elucidate the molecular mechanisms of Clitocybin A on the proliferation of DPCs, we examined the activation of wnt/${\beta}$-catenin signaling which is known to regulate hair follicle development, differentiation and hair growth. Clitocybin A activated wnt/${\beta}$-catenin signaling via the increase of phospho(ser552)-${\beta}$-catenin, phospho(ser675)-${\beta}$-catenin and phospho(ser9)-$GSK3{\beta}$. Furthermore, Clitocybin A markedly increased the activation of extracellular signal-regulated kinase (ERK). These results suggest that the Clitocybin A may induce hair growth by proliferation of DPCs via cell-cycle progression as well as the activation of Wnt/${\beta}$-catenin signaling and ERK pathway.

Diabetic Nephropathy in Childhood and Adolescence (II) ; Pathology and Pathophysiology (소아청소년기 당뇨병성 신병증 (II) ; 병리 소견 및 병태생리를 중심으로)

  • Ha, Tae-Sun
    • Childhood Kidney Diseases
    • /
    • v.13 no.2
    • /
    • pp.99-117
    • /
    • 2009
  • Diabetic nephropathy is a major cause of chronic renal failure in developing countries, and the prevalence rate has markedly increased during the past decade. Diabetic nephropathy shows various specific histological changes not only in the glomeruli but also in the tubulointerstitial region. In the early stage, the effacement of podocyte foot processes and thickened glomerular basement membrane (GBM) is noticed even at the stage of microalbuminuria. Nodular, diffuse, and exudative lesions, so-called diabetic glomerulosclerosis, are well known as glomerular lesions. Interstitial lesions also exhibit fibrosis, edema, and thickened tubular basement membrane. Diabetic nephropathy is considered to be multifactorial in origin with increasing evidence that one of the major pathways involved in the development and progression of diabetic nephropathy as a result of hyperglycemia. Hyperglycemia induces renal damage directly or through hemodynamic alterations, such as, glomerular hyperfiltration, shear stress, and microalbuminuria. Chronic hyperglycemia also induces nonhemodynamic dysregulations, such as, increased production of advanced glycosylation endproducts, oxidative stress, activation of signal pathway, and subsequent various cytokines. Those pathogenic mechanisms resulted in extracellular matrix deposition including mesangial expansion and GBM thickening, glomerular hypertrophy, inflammation, and proteinuria. In this review, recent opinions on the histopathologic changes and pathophysiologic mechanisms leading to initiation and progression of diabetic nephropathy will be introduced.