• Title/Summary/Keyword: profiles steel

Search Result 170, Processing Time 0.023 seconds

Chloride penetration in anchorage concrete of suspension bridge during construction stage

  • Yang, In-Hwan;Yoon, Yong-Sik;Kwon, Seung-Jun
    • Advances in concrete construction
    • /
    • v.10 no.1
    • /
    • pp.13-20
    • /
    • 2020
  • Steel corrosion in embedded steel causes a significant durability problems and this usually propagates to structural degradation. Large-scaled concrete structures, PSC (Pre-stressed Concrete) or RC (Reinforced Concrete) structures, are usually constructed with mass concrete and require quite a long construction period. When they are located near to sea shore, chloride ion penetrates into concrete through direct or indirect exposure to marine environment, and this leads durability problems. Even if the structures are sheltered from chloride ingress outside after construction, the chloride contents which have been penetrated into concrete during the long construction period are differently evaluated from the initially mixed chloride content. In the study, chloride profiles in cores extracted from anchorage concrete block in two large-scaled suspension bridge (K and P structure) are evaluated considering the exposure periods and conditions. Total 21 cores in tendon room and chamber room were obtained, and the acid-soluble chlorides and compressive strength were evaluated for the structures containing construction period around 3 years. The test results like diffusion coefficient and surface chloride content from the construction joint and cracked area were also discussed with the considerations for maintenance.

Wavelet analysis and enhanced damage indicators

  • Lakshmanan, N.;Raghuprasad, B.K.;Muthumani, K.;Gopalakrishnan, N.;Basu, D.
    • Smart Structures and Systems
    • /
    • v.3 no.1
    • /
    • pp.23-49
    • /
    • 2007
  • Wavelet transforms are the emerging signal-processing tools for damage identification and time-frequency localization. A small perturbation in a static or dynamic displacement profile could be captured using multi-resolution technique of wavelet analysis. The paper presents the wavelet analysis of damaged linear structural elements using DB4 or BIOR6.8 family of wavelets. Starting with a localized reduction of EI at the mid-span of a simply supported beam, damage modeling is done for a typical steel and reinforced concrete beam element. Rotation and curvature mode shapes are found to be the improved indicators of damage and when these are coupled with wavelet analysis, a clear picture of damage singularity emerges. In the steel beam, the damage is modeled as a rotational spring and for an RC section, moment curvature relationship is used to compute the effective EI. Wavelet analysis is performed for these damage models for displacement, rotation and curvature mode shapes as well as static deformation profiles. It is shown that all the damage indicators like displacement, slope and curvature are magnified under higher modes. A localization scheme with arbitrary location of curvature nodes within a pseudo span is developed for steady state dynamic loads, such that curvature response and damages are maximized and the scheme is numerically tested and proved.

HIGH SPEED VARIABLE SQUARE WAVE AC SUBMERGED ARC WELDING -FREQUENCY/BALANCE STUDY .250″ PLAIN CARBON STEEL

  • Reynolds, Jon-O;Sean P. Moran
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.361-365
    • /
    • 2002
  • Advancements in silicon phase control (SCR) technologies provide an arc welding power supply that has the capability to allow the alteration of the Alternating Current (AC) welding output. These technologies provide a square wave output involving sixteen frequency selections and multiple balance selections. While an AC out put is known to minimize magnetic disturbances associate with Direct Current (DC), the potentials of a non-sinusoidal waveform have not been explored. The focus of the paper is to determine the effects that the frequency and balance of an AC wave form output will have upon a high speed Submerge Arc (SAW) application. The test matrix of the project includes welding .250" steel plate. Joint type is square groove with a travel speed of 65 IPM. Each of the weld parameters was held constant, only the frequency and/or balance were altered between welds. Each frequency/balance combination involved three-gap spacing. Upon completion of the welds the bead profiles were measured and recorded. A relationships/trends were observed with various frequency and balance values. Optimum frequency and balance values were found for the .250" square groove application which permit consistent weld sizing, ease of slag removal, and minimal plate distortion.

  • PDF

Internal Stress/Strain Analysis during Fatigue Crack Growth Retardation Using Neutron Diffraction (피로 균열 성장 지연에 대한 중성자 회절 응력 분석)

  • Seo, Sukho;Huang, E-Wen;Woo, Wanchuck;Lee, Soo Yeol
    • Korean Journal of Materials Research
    • /
    • v.28 no.7
    • /
    • pp.398-404
    • /
    • 2018
  • Fatigue crack growth retardation of 304 L stainless steel is studied using a neutron diffraction method. Three orthogonal strain components(crack growth, crack opening, and through-thickness direction) are measured in the vicinity of the crack tip along the crack propagation direction. The residual strain profiles (1) at the mid-thickness and (2) at the 1.5 mm away from the mid-thickness of the compact tension(CT) specimen are compared. Residual lattice strains at the 1.5 mm location are slightly higher than at the mid-thickness. The CT specimen is deformed in situ under applied loads, thereby providing evolution of the internal stress fields around the crack tip. A tensile overload results in an increased magnitude of the compressive residual stress field. In the crack growth retardation, it is found that the stresses are dispersed in the crack-wake region, where the highest compressive residual stresses are measured. Our neutron diffraction mapping results reveal that the dominant mechanism is by interrupting the transfer of stress concentration at the crack tip.

Effect of tapered-end shape of FRP sheets on stress concentration in strengthened beams

  • Belakhdar, Khalil;Tounsi, Abdelouahed;Adda Bedia, El Abbes;Redha, Yeghnem
    • Steel and Composite Structures
    • /
    • v.11 no.6
    • /
    • pp.435-454
    • /
    • 2011
  • Bonding composite materials to structural members for strengthening purpose has received a considerable attention in recent years. The major problem when using bonded FRP or steel plates to strengthen existing structures is the high interfacial stresses that may be built up near the plate ends which lead to premature failure of the structure. As a result, many researchers have developed several analytical methods to predict the interface performance of bonded repairs. In this paper, a numerical solution using finite - difference method is used to calculate the interfacial stress distribution in beams strengthened with FRP plate having a tapered ends with different thinning profiles. These latter, can significantly reduce the stress concentration. In the present theoretical analysis, the adherend shear deformations are taken into account by assuming a parabolic shear stress through the thickness of both beam and bonded plate. Numerical results from the present analysis are presented to demonstrate the advantages of use the tapers in design of strengthened beams.

Preliminary Modelling of Plasco Tower Collapse

  • Yarlagadda, Tejeswar;Hajiloo, Hamzeh;Jiang, Liming;Green, Mark;Usmani, Asif
    • International Journal of High-Rise Buildings
    • /
    • v.7 no.4
    • /
    • pp.397-408
    • /
    • 2018
  • In a recent tragic fire incident, the Plasco Tower collapsed after an intense outburst of fire lasting for three and a half hours and claiming the lives of 16 firefighters and 6 civilians. This paper will present continuing collaborative work between Hong Kong Polytechnic University and Queen's University in Canada to model the progressive collapse of the tower. The fire started at the 10th floor and was observed to have travelled along the floor horizontally and through the staircase and windows vertically. Plasco Tower was steel structure and all the steel sections were fabricated by welding standard European channel or angle profiles and no fire protection was applied. Four internal columns carried the loads transferred by the primary beams, and box columns were constructed along the perimeter of the building as a braced tube for resisting seismic loading. OpenSees fibre-based sections and displacement-based beam-column elements are used to model the frames, while shell elements are used for the reinforced concrete floor slabs. The thermal properties and elevated temperature mechanical properties are as recommended in the Eurocodes. The results in this preliminarily analysis are based on rough estimations of the structure's configuration. The ongoing work looks at modeling the Plasco Tower based on the most accurate findings from reviewing many photographs and collected data.

Characterization of Elliptical Dimple Fabricated with Dual Frequency Vibration Assisted Machining (이중 주파수 지원 절삭으로 가공된 타원형 딤플의 특성)

  • Park, Gun Chul;Ko, Tae Jo;Kurniawan, Rendi;Ali, Saood
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.2
    • /
    • pp.23-31
    • /
    • 2021
  • Surface texturing is a promising route to reduce the friction forces between two surfaces in sliding contact. To this end, the fabrication of micro dimples is one of the most widely used surface texturing methods. According to published results, textured surfaces with elliptical micro dimples offer the best friction performance. Therefore, we fabricated elliptical micro dimples on carbon steel (SM45C) by using dual frequency vibration assisted machining. High and low frequencies of 16.3 kHz and 230 Hz were applied to the 3D resonant elliptical vibrator. The 3D resonant elliptical vibrator with a triangular cubic boron nitride insert was assembled on a computer numerically controlled turning lathe. Oval micro dimples of various profiles were manufactured on carbon steel. In terms of the profile of the elliptical micro dimples, the experimental results indicated that the average micro dimple width and depth were 112 ㎛ and 7.7 ㎛. These dimensions are closely related to the cutting conditions and can be easily controlled.

Fatigue performance of deepwater SCR under short-term VIV considering various S-N curves

  • Kim, D.K.;Choi, H.S.;Shin, C.S.;Liew, M.S.;Yu, S.Y.;Park, K.S.
    • Structural Engineering and Mechanics
    • /
    • v.53 no.5
    • /
    • pp.881-896
    • /
    • 2015
  • In this study, a method for fatigue performance estimation of deepwater steel catenary riser (SCR) under short-term vortex-induced vibration was investigated for selected S-N curves. General tendency between S-N curve capacity and fatigue performance was analysed. SCRs are generally used to transport produced oil and gas or to export separated oil and gas, and are exposed to various environmental loads in terms of current, wave, wind and others. Current is closely related with VIV and it affects fatigue life of riser structures significantly. In this regards, the process of appropriate S-N curve selection was performed in the initial design stage based on the scale of fabrication-related initial imperfections such as welding, hot spot, crack, stress concentration factor, and others. To draw the general tendency, the effects of stress concentration factor (SCF), S-N curve type, current profile, and three different sizes of SCRs were considered, and the relationship between S-N curve capacity and short-term VIV fatigue performance of SCR was derived. In case of S-N curve selection, DNV (2012) guideline was adopted and four different current profiles of the Gulf of Mexico (normal condition and Hurricane condition) and Brazil (Amazon basin and Campos basin) were considered. The obtained results will be useful to select the S-N curve for deepwater SCRs and also to understand the relationship between S-N curve capacity and short-term VIV fatigue performance of deepwater SCRs.

Forming Phases and corrsion properties of Nitride layer During the Ion Nitriding for AISI 304 Stainless Steels (AISI 304 스테인리스 강의 이온질화에 의한 질화성의 생성 상과 부식특성)

  • Shin, D. H.;Choi, W.;Lee, J. H.;Kim, H. J.;Nam, S. E.
    • Journal of the Korean institute of surface engineering
    • /
    • v.31 no.1
    • /
    • pp.54-62
    • /
    • 1998
  • In this study, the behaviorof ion nitriding of AISI 304 stainless steel was investigated using plasma ion nitriding system. The characteristics of ion nitriding, and their micsoctrucyures, and physical properties were investigated as a function of process parmeteds. important conclusions can be summarzied as follows. Firstly, it was found that growth of nitride layer in ion nitriding are mainly affected by N2 partial pressures and nitriding temperatures for AISI 304 stainless steel. The $N_2$<\TEX> partial pressure plays on important role in ion nitriding since it determiness the incoming flux of nitrogen species onto specimen surface. Nitriding thmprrature is also important besauseit determines the diffusion rates of nitrogen through nitride layers. While both parameters affects the characteristics rateding are controlled by nitridingen diffusion nitration profiles of N and alloying elements such as Cr and Ni are observed through niride layers. Secondly, nitride layer consists of the upper white laywe having various nitride phases and the underneath diffusion layers. The thickness of white layer increases with $N_2$<\TEX> partial pressures and nitriding temperatures. The thinkness of diffusion layer is increasting nitriding temperatures. Finally, nitriding of stainless steels steel show slighly low their corrsionce prorerties. However, passivation properties, which is normally observed in stainless steels, were still observed aftre ion nitriding.

  • PDF

Measurements of Residual Stress in Nitrocarburised Layer Formed in Hot Work Tool Steel (열간가공 공구강에 형성된 침질탄화층의 잔류응력 측정)

  • Oh, Do-Won;Park, Ki-Won;Lee, Jun-Boum;Lee, Sang-Yun
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.11 no.4
    • /
    • pp.305-314
    • /
    • 1998
  • This study has been performed to investigate into some effects of various amounts of $CO_2$ and CO gas added to the $50%NH_3-N_2$ based gas atmosphere on microstructure, hardness, chemical analysis and residual stress in the compound and diffusion layer of AISI H13 treated by gaseous nitrocarburising process. The compound layer formed in the surface is composed of mainly ${\varepsilon}-Fe_3$(N,C) and small amount of ${\gamma}^{\prime}-Fe_4N$ and cementite. The maximum hardness value obtainable from H13 steel is shown to be 1200 Hv and the effecvtive hardening depth increases with increasing CO content from 1% to 4%. In the case of CO content over 4%, however, it decreases with increasing CO content. The composition profiles of nitrogen and carbon are found to be within the ${\varepsilon}$-phase field located above the ${\varepsilon}+{\gamma}^{\prime}$ phase field in the Fe-N-C diagram. It is shown that the maximum value of compressive residual stress of H13 steel treated in atmospheres of $50%NH_3-(2,4)%CO_2-N_2-CO$ gas mixture is $48kg/mm^2$ and the depth to which residual stress is in Compressive state is $90{\mu}m$ for the atmosphere $50%NH_3-45%N_2-4%CO_2-1%CO$ gas mixture. It is consequently important to control the maximum value and size of compressive residual stress region in order to obtain desirable mechanical properties.

  • PDF