This paper presents production data analysis for two production wells located in the shale gas field, Canada, with the proper analysis method according to each production performance characteristics. In the case A production well, the analysis was performed by applying both time and superposition time because the production history has high variation. Firstly, the flow regimes were classified with a log-log plot, and as a result, only the transient flow was appeared. Then the area of simulated reservoir volume (SRV) analyzed based on flowing material balance plot was calculated to 180 acres of time, and 240 acres of superposition time. And the original gas in place (OGIP) also was estimated to 15, 20 Bscf, respectively. However, as the area of SRV was not analyzed with the boundary dominated flow data, it was regarded as the minimum one. Therefore, the production forecasting was conducted according to variation of b exponent and the area of SRV. As a result, estimated ultimate recovery (EUR) increased 1.2 and 1.4 times respectively depending on b exponent, which was 0.5 and 1. In addition, as the area of SRV increased from 240 to 360 acres, EUR increased 1.3 times. In the case B production well, the formation compressibility and permeability depending on the overburden were applied to the analysis of the overpressured reservoir. In comparison of the case that applied geomechanical factors and the case that did not, the area of SRV was increased 1.4 times, OGIP was increased 1.5 times respectively. As a result of analysis, the prediction of future productivity including OGIP and EUR may be quite different depending on the analysis method. Thus, it was found that proper analysis methods, such as pseudo-time, superposition time, geomechanical factors, need to be applied depending on the production data to gain accurate results.
Business entrepreneurs reflect their views of domestic and foreign economic activities on their operation for the growth of their business. The decision, forecasting, and planning based on their economic sentiment affect business operation such as production, investment, and hiring and consequently affect condition of national economy. Business survey index(BSI) is compiled to get the information of business entrepreneurs' economic sentiment for the analysis of business condition. BSI has been used as an important variable in the short-term forecasting models for business cycle analysis, especially during the the period of extreme business fluctuations. Recent financial crisis has arised extreme business fluctuations similar to those caused by currency crisis at the end of 1997, and brought back the importance of BSI as a variable for the economic forecasting. In this paper, the meaning of BSI as an economic sentiment index is reviewed and a GUIDE regression tree is constructed to find out the factors which affect on BSI. The result shows that the variables related to the stability of financial market such as kospi index(Korea composite stock price index) and exchange rate as well as manufacturing operation ratio and consumer goods sales are main factors which affect business entrepreneurs' economic sentiment.
The KOTI(Korea Transport Institute) released the new version of KTDB(Korea Transport DataBase) in public. The new KTDB is different from the past KTDB in using the concept of trip generation and trip attraction instead of using the concept of Origin-Destination (OD), which was used in the past KTDB. Thus, the appropriate analysis method for future travel demand became necessary for the new type of KTDB. The method should be based on the concept of PA(Production-Attraction). This study focused on analysis of trip generation and trip distribution related to newly generated trips by future land developments. The study also described clearly the standardized forecasting process and methods with PA travel tables. The study showed that the analysis results with OD-based analysis can be different from the results with PA-based analysis in forecasting travel demand for a simple example case even though they used exactly same orignal travel data. Therefore, this study emphasized that a proper method should be applied with the new PA-based KTDB. It is necessary to prepare and disseminate guidelines of the proper forecasting method and application with PA-based travel data for practician.
Jang, Il;Kim, Hyang-Mi;Lee, Soon-Won;Choi, Kyung-Hee;Suh, Sang Jae
The Korean Journal of Pesticide Science
/
v.19
no.2
/
pp.93-100
/
2015
This study surveyed the selling, buying, usage, selection and spraying frequency of pesticides on apple orchards in Geochang, Gyeongsangnam-do province from 2012 to 2013 and found that the fungicides, insecticides and acaricides were sprayed $13.9{\pm}3.5$, $12.6{\pm}3.2$, and $2.6{\pm}1.3$ times per year, respectively. Fungicides were applied mainly to control for Diplocarpon mali, Colletotrichum gloeosporoides and Alternaria mali, whereas insecticides were sprayed mostly to control Grapholita molesta, Carposina sasakii insects. Dealers sold pesticides without monitoring of the pests in the apple orchards, and also sometimes sold pesticides which are non-registered for apple. Most of the farmers were highly relied on dealers' recommendations to choosing the brand product. Relating on Integrated Pest Management (IPM) on apple orchards in Geochang, residual active ingredient of frequently sprayed fungicides, insecticides, and acaricides were analyzed. Most applications of the fungicides, insecticides and acaricides were well corresponded with FAO's recommendations. For production of safe food and use of pesticides, it is requested to develope control calender and consideration of training program for farmers. The regional characteristics and environmental situation of the farm also should be considered.
Big data has been generated in various fields. Many companies have now tried to make profits by building a system capable of analyzing big data based on artificial intelligence (AI) techniques. Integrating AI technology has made analyzing and utilizing vast amounts of data increasingly valuable. In particular, demand forecasting with maximum accuracy is critical to government and business management in various fields such as finance, procurement, production and marketing. In this case, it is important to apply an appropriate model that considers the demand pattern for each field. It is possible to analyze complex patterns of real data that can also be enlarged by a traditional time series model or regression model. However, choosing the right model among the various models is difficult without prior knowledge. Many studies based on AI techniques such as machine learning and deep learning have been proven to overcome these problems. In addition, demand forecasting through the analysis of stereotyped data and unstructured data of images or texts has also shown high accuracy. This paper introduces important areas where demand forecasts are relatively active as well as introduces machine learning and deep learning techniques that consider the characteristics of each field.
Kim, Tae-Ho;Rho, Jeong-Hyun;Kim, Young-Il;Oh, Young-Taek
International Journal of Highway Engineering
/
v.12
no.4
/
pp.93-100
/
2010
Trip generation is the first step in the conventional four-step model and has great effects on overall demand forecasting, so accuracy really matters at this stage. A linear regression model is widely used as a current trip generation model for such plans as urban transportation and SOC facilities, assuming that the relationship between each socio-economic index and trip generation stays linear. But when rapid urban development or an urban planning structure has changed, socio-economic index data for trip estimation may be lacking to bring many errors in estimated trip. Hence, instead of assuming that a socio-economic index widely used for a general purpose, this study aims to develop a new trip generation model by type based on the market separation for the variables to reflect the characteristics of various zones. The study considered the various characteristics (land use, socio-economic) of zones to enhance the forecasting accuracy of a trip generation model, the first-step in forecasting transportation demands. For a market separation methodology to improve forecasting accuracy, data mining (CART) on the basis of trip generation was used along with a regression analysis. Findings of the study indicated as follows : First, the analysis of zone characteristics using the CART analysis showed that trip production was under the influence of socio-economic factors (men-women relative proportion, age group (22 to 29)), while trip attraction was affected by land use factors (the relative proportion of business facilities) and the socio-economic factor (the relative proportion of third industry workers). Second, model development by type showed as a result that trip generation coefficients revealed 0.977 to 0.987 (trip/person) for "production" 0.692 to 3.256 (trip/person) for "attraction", which brought the necessity for type classifications. Third, a measured verification was conducted, where "production" and "attraction" showed a higher suitability than the existing model. The trip generation model by type developed in this study, therefore, turned out to be superior to the existing one.
Eunkyung Kang;Ha-Ryeom Jang;Seonuk Yang;Sung-Byung Yang
Journal of Intelligence and Information Systems
/
v.29
no.4
/
pp.229-256
/
2023
The increase in telecommuting and household electricity demand due to the pandemic has led to significant changes in electricity demand patterns. This has led to difficulties in identifying KEPCO's PPA (power purchase agreements) and residential solar power generation and has added to the challenges of electricity demand forecasting and grid operation for power exchanges. Unlike other energy resources, electricity is difficult to store, so it is essential to maintain a balance between energy production and consumption. A shortage or overproduction of electricity can cause significant instability in the energy system, so it is necessary to manage the supply and demand of electricity effectively. Especially in the Fourth Industrial Revolution, the importance of data has increased, and problems such as large-scale fires and power outages can have a severe impact. Therefore, in the field of electricity, it is crucial to accurately predict the amount of power generation, such as renewable energy, along with the exact demand for electricity, for proper power generation management, which helps to reduce unnecessary power production and efficiently utilize energy resources. In this study, we reviewed the renewable energy generation forecasting system, its objectives, and practical applications to construct optimal aggregated power resources using data from 169 power plants provided by the Ministry of Trade, Industry, and Energy, developed an aggregation algorithm considering the settlement of the forecasting system, and applied it to the analytical logic to synthesize and interpret the results. This study developed an optimal aggregation algorithm and derived an aggregation configuration (Result_Number 546) that reached 80.66% of the maximum settlement amount and identified plants that increase the settlement amount (B1783, B1729, N6002, S5044, B1782, N6006) and plants that decrease the settlement amount (S5034, S5023, S5031) when aggregating plants. This study is significant as the first study to develop an optimal aggregation algorithm using aggregated power resources as a research unit, and we expect that the results of this study can be used to improve the stability of the power system and efficiently utilize energy resources.
This study is aimed at giving the basic information for individual farm households to make decisions for optimizing their farm sizes and for the government to implement farm size optimization policies through the identification of combinations among rice production factors in plain areas like Cheolwon district and the suggestion of the optimal farm sizes of individual farmers based on the scale of economy calculated. The data of agricultural production costs of 50 rice farmers in the plain area which is located in Dongsong-eup Cholwon district, Kangwon province were used in the analysis. The 'translog' cost function among various methods which is a flexible function type was adopted to calculate the scale of economy in rice production. Seemingly unrelated regression(SUR) method was used in forecasting functions and processing other statistics by SHAZAM which is one of the computer aid program for quantitative econometric analysis. In conclusion, the long-run average cost(LAC) curve showed 'U-shape' which was different from 'L-type' one which was shown in the previous studies by others. The lowest point of the LAC was 9.764ha and the concerned production cost amounted to 633 Won/kg. Based on these results, it have to be suggested that around 10 ha of paddy is the target size for policy assistances to save costs under the present level of farming practices and technology. The above results show that the rice production costs could be saved up to 10ha in Cheolwon plain area which is a typical paddy field. However, land use, land condition, land ownership and manager's ability which may affect scale of economy should be considered. Furthermore, reasonable management will have to be realized by means of labor saving technology and cost saving management skill like enlargement of farm size of rice.
This study aims to analyze the cost of climate change damages to laver and sea mustard aquaculture, which are considered to be highly vulnerable to climate change in Korea. For this purpose, the correlation between aquaculture production and climate factors such as water temperature, salinity, air temperature, and precipitation was estimated using a panel regression model. The SSP scenario was applied to predict the changes in production and damage costs due to changes in future climate factors. As a result of the analysis, laver production is predicted to decrease by 18.0-27.2% in 2050 and 20.6-61.6% in 2100, and damage costs are predicted to increase from 29.7-50.8 billion KRW in 2050 to 35.7-116.1 billion KRW in 2100. Sea mustard production is projected to decrease by 24.5-37.2% in 2050 and 24.0-34.5% in 2100, with similar damage costs of 41.1-61.8 billion KRW and 41.1-58.6 billion KRW, respectively. These damage costs are expected to occur in the short term as damage caused by fishery disasters such as high temperatures, and in the long term as a decrease in production due to changes in aquaculture sites. Therefore, measures such as strengthening the forecasting system to prevent high-temperature damage, developing high-temperature-resistant varieties, and relocating fishing grounds in response to changes in aquaculture sites will be necessary.
The purpose of this study was to examine the effectiveness and efficiency of a policy by comparing and analyzing the impact of the rice market isolation system and production adjustment system (strategic crops direct payment system that induces the cultivation of other crops instead of rice) on rice supply, rice price, and government's financial expenditure. To achieve this purpose, a rice supply and demand forecasting and policy simulation model was developed in this study using a partial equilibrium model limited to a single item (rice), a dynamic equation model system, and a structural equation system that reflects the casual relationship between variables with economic theory. The rice policy analysis model used a recursive model and not a simultaneous equation model. The policy is distinct from that of previous studies, in which changes in government's policy affected the price of rice during harvest and the lean season before the next harvest, and price changes affected the supply and demand of rice according to the modeling, that is, a more specific policy effect analysis. The analysis showed that the market isolation system increased government's financial expenditure compared to the production adjustment system, suggesting low policy financial efficiency, low policy effectiveness on target, and increased harvest price. In particular, the market isolation system temporarily increased the price during harvest season but decreased the price during the lean season due to an increase in ending stock caused by increased production and government stock. Therefore, a decrease in price during the lean season may decrease annual farm-gate prices, and the reverse seasonal amplitude is expected to intensify.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.