• Title/Summary/Keyword: product accident

Search Result 168, Processing Time 0.027 seconds

A Theoretical Approach of Accident Cost Analyses for Product Safety Management (제품안전경영을 위한 사고비용분석의 이론적 접근)

  • Kim Sa Kil;Byun Seong Nam
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2003.05a
    • /
    • pp.230-235
    • /
    • 2003
  • Accident analysis is special concern to researchers in traffic safety. Accident analysis in product safety, however, is not. The needs of product safety management alter it in the world by all manufacturers. The purpose of this study is to propose a theoretical principles for product safety management through the accident cost analyses. The accident cost is a important factor to prevent product accident and to treat some claims of customers. It is sure that this principles can help all making decisions of manufactures with expected accident cost per a product accident and with total expected accident cost.

  • PDF

EXPERIMENTAL INVESTIGATIONS RELEVANT FOR HYDROGEN AND FISSION PRODUCT ISSUES RAISED BY THE FUKUSHIMA ACCIDENT

  • GUPTA, SANJEEV
    • Nuclear Engineering and Technology
    • /
    • v.47 no.1
    • /
    • pp.11-25
    • /
    • 2015
  • The accident at Japan's Fukushima Daiichi nuclear power plant in March 2011, caused by an earthquake and a subsequent tsunami, resulted in a failure of the power systems that are needed to cool the reactors at the plant. The accident progression in the absence of heat removal systems caused Units 1-3 to undergo fuel melting. Containment pressurization and hydrogen explosions ultimately resulted in the escape of radioactivity from reactor containments into the atmosphere and ocean. Problems in containment venting operation, leakage from primary containment boundary to the reactor building, improper functioning of standby gas treatment system (SGTS), unmitigated hydrogen accumulation in the reactor building were identified as some of the reasons those added-up in the severity of the accident. The Fukushima accident not only initiated worldwide demand for installation of adequate control and mitigation measures to minimize the potential source term to the environment but also advocated assessment of the existing mitigation systems performance behavior under a wide range of postulated accident scenarios. The uncertainty in estimating the released fraction of the radionuclides due to the Fukushima accident also underlined the need for comprehensive understanding of fission product behavior as a function of the thermal hydraulic conditions and the type of gaseous, aqueous, and solid materials available for interaction, e.g., gas components, decontamination paint, aerosols, and water pools. In the light of the Fukushima accident, additional experimental needs identified for hydrogen and fission product issues need to be investigated in an integrated and optimized way. Additionally, as more and more passive safety systems, such as passive autocatalytic recombiners and filtered containment venting systems are being retrofitted in current reactors and also planned for future reactors, identified hydrogen and fission product issues will need to be coupled with the operation of passive safety systems in phenomena oriented and coupled effects experiments. In the present paper, potential hydrogen and fission product issues raised by the Fukushima accident are discussed. The discussion focuses on hydrogen and fission product behavior inside nuclear power plant containments under severe accident conditions. The relevant experimental investigations conducted in the technical scale containment THAI (thermal hydraulics, hydrogen, aerosols, and iodine) test facility (9.2 m high, 3.2 m in diameter, and $60m^3$ volume) are discussed in the light of the Fukushima accident.

The Effect of the Writing Rules of Product User Guide on Consumer Accident Prevention (제품사용설명서의 작성원칙이 소비자의 제품사고예방에 미치는 영향)

  • Seo, JunHyeok;Bae, SungMin
    • Journal of Korean Society for Quality Management
    • /
    • v.47 no.3
    • /
    • pp.509-522
    • /
    • 2019
  • Purpose: The purpose of this study is to analyze how the writing rules of the product user guide affect consumers' understanding of products and the prevention of product accidents. Methods: We surveyed consumers to see how the writing rules of the product user guide help consumers to understand products and prevent product accidents. Results: We derived the importance, necessity, usability, and readability of the principle of making product manuals through analysis of previous research. Usability is the writing rule of the product user guide that the consumer has the most influence on the understanding of product use and the product accident. Conclusion: It is necessary to make product user guide so that consumers can understand the function and safety of products by using video and various image media. Also, It is the obligation to explain all stages of the product and to communicate through the product user guide how to prevent the product accident step by step.

A Study on the Safety Education of Logistics Center : Forklift Training Approach (물류센터 안전교육에 관한 연구 : 지게차 교육을 중심으로)

  • Kim, Ki Hong;Chung, Byung Hyun
    • Journal of the Korea Safety Management & Science
    • /
    • v.22 no.3
    • /
    • pp.9-14
    • /
    • 2020
  • A forklift accident occurs in the logisitcs center. there are many kinds of accidents such as a casualty accident or a minor accident, etc. there are many other causes of accident, including poor visibility and habitual operational mistakes The result of the accident is the phenomenon of cutting, falling, scratching of the product. In the case of minor accidents, workers do not report accidents, so the occurrence of accidents is unknown. The customer receives the goods and then notifies them that they are defective product. After the product is returned, we can see that the forklift accident caused the problem of the product The result of the late response affects the image of the enterprise. In this study, we recognized the need for safety education to prevent accidents and found out which of the education items could raise awareness of safety. As result of the study, disinfection and forklift maneuverability regarding speed were mentioned as the most important items in education.

Analysis of fission product reduction strategy in SGTR accident using CFVS

  • Shin, Hoyoung;Kim, Seungwoo;Park, Yerim;Jin, Youngho;Kim, Dong Ha;Jae, Moosung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.812-824
    • /
    • 2021
  • In order to reduce risks from the Steam Generator Tube Rupture (SGTR) accident and to meet safety targets, various measures have been analyzed to minimize the amount of fission product (FP) release. In this paper, we propose an introduction of a Containment Filtered Venting System (CFVS) connected to the steam generator secondary side, which can reduce the amount of FP release while minimizing adverse effects identified in the previous studies. In order to compare the effect of new equipment with the existing strategy, accident simulations using MELCOR were performed. As a result of simulations, it is confirmed that CFVS operation lowers FP release into the environment, and the release fractions are lower (minimum 0.6% of the initial inventory for Cs) than that of the strategy which intends to depressurize the primary system directly (minimum 15.2% for Cs). The sensitivity analyses identify that refill of the CFVS vessel is a dominant contributor reducing the amount of FP released. As the new strategy has the possibility of hydrogen combustion and detonation in CFVS, the installation of an igniter inside the CFVS vessel may be considered in reducing such hydrogen risk.

A Study on Development of Safety Shell Molds for Precision Machining of Sand Mold Casting Product (사형제품 기계가공을 위한 안전금형 개발에 관한 연구)

  • Choi, Jae-Hoon;Nam, Seung-Done
    • Journal of the Korea Safety Management & Science
    • /
    • v.15 no.4
    • /
    • pp.179-184
    • /
    • 2013
  • An accident from machine work is often fatal to the worker. This accident is mostly preventable through perfect process jig. In case of this machine work, however, the disaster frequently occurred because of the design which is not considered the beginning of product design, post-process and mass process of production. As for sand casting method, this has the merits of the production; the product is easily produced by manual labor. On the other hand, this method has the demerits of a bigger dimensional error contrary to other mass process of production. When the sand casting product is in machine work, there are various problems such as unsafe fix and excessive cutting, product desorption and rapid life depreciation of equipment and tools. Considering the characteristics of sand casting method, it is accepted as difficulty to improve the problems. In this study, it suggests shell mold method for mold instead of the machine work after the sand casting of the circle shape container product. And the surface accomplishes the following average of surface roughness Ra$9.94{\mu}m$ of machine work with the casting of flask mold by shell mold method. In accordance with the simplification of processing process and reducing the average thickness variation by mass production of product with detailed appearance, it has a good influence on safety accident prevention caused by production and damaged product. It is confirmed that making higher degree of size precision of all machine work product is possible to increase the safety and productivity, reduce the processing process and improve environment.

CURRENT RESEARCH AND DEVELOPMENT ACTIVITIES ON FISSION PRODUCTS AND HYDROGEN RISK AFTER THE ACCIDENT AT FUKUSHIMA DAIICHI NUCLEAR POWER STATION

  • NISHIMURA, TAKESHI;HOSHI, HARUTAKA;HOTTA, AKITOSHI
    • Nuclear Engineering and Technology
    • /
    • v.47 no.1
    • /
    • pp.1-10
    • /
    • 2015
  • After the Fukushima Daiichi nuclear power plant (NPP) accident, new regulatory requirements were enforced in July 2013 and a backfit was required for all existing nuclear power plants. It is required to take measures to prevent severe accidents and mitigate their radiological consequences. The Regulatory Standard and Research Department, Secretariat of Nuclear Regulation Authority (S/NRA/R) has been conducting numerical studies and experimental studies on relevant severe accident phenomena and countermeasures. This article highlights fission product (FP) release and hydrogen risk as two major areas. Relevant activities in the S/NRA/R are briefly introduced, as follows: 1. For FP release: Identifying the source terms and leak mechanisms is a key issue from the viewpoint of understanding the progression of accident phenomena and planning effective countermeasures that take into account vulnerabilities of containment under severe accident conditions. To resolve these issues, the activities focus on wet well venting, pool scrubbing, iodine chemistry (in-vessel and ex-vessel), containment failure mode, and treatment of radioactive liquid effluent. 2. For hydrogen risk: because of three incidents of hydrogen explosion in reactor buildings, a comprehensive reinforcement of the hydrogen risk management has been a high priority topic. Therefore, the activities in evaluation methods focus on hydrogen generation, hydrogen distribution, and hydrogen combustion.

Development of a Fission Product Transport Module Predicting the Behavior of Radiological Materials during Severe Accidents in a Nuclear Power Plant

  • Kang, Hyung Seok;Rhee, Bo Wook;Kim, Dong Ha
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.3
    • /
    • pp.237-244
    • /
    • 2016
  • Background: Korea Atomic Energy Research Institute is developing a fission product transport module for predicting the behavior of radioactive materials in the primary cooling system of a nuclear power plant as a separate module, which will be connected to a severe accident analysis code, Core Meltdown Progression Accident Simulation Software (COMPASS). Materials and Methods: This fission product transport (COMPASS-FP) module consists of a fission product release model, an aerosol generation model, and an aerosol transport model. In the fission product release model there are three submodels based on empirical correlations, and they are used to simulate the fission product gases release from the reactor core. In the aerosol generation model, the mass conservation law and Raoult's law are applied to the mixture of vapors and droplets of the fission products in a specified control volume to find the generation of the aerosol droplet. In the aerosol transport model, empirical correlations available from the open literature are used to simulate the aerosol removal processes owing to the gravitational settling, inertia impaction, diffusiophoresis, and thermophoresis. Results and Discussion: The COMPASS-FP module was validated against Aerosol Behavior Code Validation and Evaluation (ABCOVE-5) test performed by Hanford Engineering Development Laboratory for comparing the prediction and test data. The comparison results assuming a non-spherical aerosol shape for the suspended aerosol mass concentration showed a good agreement with an error range of about ${\pm}6%$. Conclusion: It was found that the COMPASS-FP module produced the reasonable results of the fission product gases release, the aerosol generation, and the gravitational settling in the aerosol removal processes for ABCOVE-5. However, more validation for other aerosol removal models needs to be performed.

Development of a Product Risk Assessment System using Injury Information in Korea Consumer Agency (한국소비자원 위해정보를 활용한 제품 리스크 평가시스템 개발)

  • Suh, Jungdae
    • Journal of Digital Convergence
    • /
    • v.15 no.4
    • /
    • pp.181-190
    • /
    • 2017
  • Recently, safety accidents of daily necessities such as humidifier disinfectant, mobile phones, and infant diapers, have occurred frequently. To protect consumers from these accidents, product safety management is required, and a product risk assessment tool is needed to evaluate the degree of safety of the product. In this paper, we have constructed RAS, which is a system that can evaluate product risk based on injury information of product accident in Korea Consumer Agency. RAS consists of an injury information analysis system for analyzing accident-related information and a risk assessment system for assessing risk using information derived from the system. The Bayesian network - based probabilistic method is applied to reflect the causal relationships that affect product risk in the risk assessment process. We used RAS to evaluate 33 children's products and compared them with the results of EU RAPEX RAG. Subsequent tasks include reducing the subjectivity of the input of the accident impact scale, and linking the above two systems.

A Systematic Approach to Accident Scenario Analysis: Child Safety Seat Case Study (체계적 사고 시나리오 분석기법을 이용한 유아용 안전의자 사례연구)

  • Byun, Seong-Nam;Lee, Dong-Hoon
    • IE interfaces
    • /
    • v.15 no.2
    • /
    • pp.114-125
    • /
    • 2002
  • The objective of this paper is to describe a systematic accident scenario analysis method(SASA) adept at creating accident scenarios for the design of safer products. This approach was inspired by the Quality Function Deployment(QFD) method, which is conventionally used in quality management. In this study, the QFD provides a formal and systematic scheme to devise accident scenarios while maintaining objectivity. SASA consists of three key stages to be broken down into a series of consecutive steps:(1) developing an accident analysis tableau,(2) devising the accident scenarios using the accident analysis tableau,(3) performing a feasibility test, a clustering process and a patterning process, and finally(4) performing quantitative evaluation of each accident scenario. The SASA was applied to a case study of child safety seats. The accident analysis tableau devised 2828(maximum) accident scenarios from all possible relationships between the hazard factors and situation characteristics. Among them, 270 scenarios were devised through the feasibility test and the clustering process. The patterning process reduced them to 29 patterns representative of all accident scenarios. Based on an intensive analysis of the accident patterns, design guidelines for a safer child safety seat were recommended. The implications of the study on the child safety seat case were then discussed.