• Title/Summary/Keyword: processing.

Search Result 69,871, Processing Time 0.088 seconds

An Improvement of Kubernetes Auto-Scaling Based on Multivariate Time Series Analysis (다변량 시계열 분석에 기반한 쿠버네티스 오토-스케일링 개선)

  • Kim, Yong Hae;Kim, Young Han
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.3
    • /
    • pp.73-82
    • /
    • 2022
  • Auto-scaling is one of the most important functions for cloud computing technology. Even if the number of users or service requests is explosively increased or decreased, system resources and service instances can be appropriately expanded or reduced to provide services suitable for the situation and it can improves stability and cost-effectiveness. However, since the policy is performed based on a single metric data at the time of monitoring a specific system resource, there is a problem that the service is already affected or the service instance that is actually needed cannot be managed in detail. To solve this problem, in this paper, we propose a method to predict system resource and service response time using a multivariate time series analysis model and establish an auto-scaling policy based on this. To verify this, implement it as a custom scheduler in the Kubernetes environment and compare it with the Kubernetes default auto-scaling method through experiments. The proposed method utilizes predictive data based on the impact between system resources and response time to preemptively execute auto-scaling for expected situations, thereby securing system stability and providing as much as necessary within the scope of not degrading service quality. It shows results that allow you to manage instances in detail.

Study on the Effect of Emissivity for Estimation of the Surface Temperature from Drone-based Thermal Images (드론 열화상 화소값의 타겟 온도변환을 위한 방사율 영향 분석)

  • Jo, Hyeon Jeong;Lee, Jae Wang;Jung, Na Young;Oh, Jae Hong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.1
    • /
    • pp.41-49
    • /
    • 2022
  • Recently interests on the application of thermal cameras have increased with the advance of image analysis technology. Aside from a simple image acquisition, applications such as digital twin and thermal image management systems have gained popularity. To this end, we studied the effect of emissivity on the DN (Digital Number) value in the process of derivation of a relational expression for converting DN to an actual surface temperature. The DN value is a number representing the spectral band value of the thermal image, and is an important element constituting the thermal image data. However, the DN value is not a temperature value indicating the actual surface temperature, but a brightness value indicating high and low heat as brightness, and has a non-linear relationship with the actual surface temperature. The reliable relationship between DN and the actual surface temperature is critical for a thermal image processing. We tested the relationship between the actual surface temperature and the DN value of the thermal image, and then the radiation adjustment was performed to better estimate actual surface temperatures. As a result, the relation graph between the actual surface temperature and the DN value similarly show linear pattern with the relation graph between the radiation-controlled non-contact thermometer and the DN value. And the non-contact temperature after adjusting the emissivity was closer to the actual surface temperature than before adjusting the emissivity.

Factors Affecting Consumers' Acceptance of e-Commerce Consumer Credit Service: Multiple Group Path Analysis by Naver Shopping and Coupang (이커머스 후불결제(BNPL) 수용에 영향을 미치는 요인: 네이버쇼핑과 쿠팡 간 다중집단 비교)

  • Kim, Su Jin;Mo, Jeonghoon
    • The Journal of Society for e-Business Studies
    • /
    • v.27 no.2
    • /
    • pp.105-135
    • /
    • 2022
  • As COVID-19 has led to a surge in e-commerce Buy Now Pay Later(BNPL) has become preferred choice among millennials. In Korea Coupang followed by Naver Pay offers a deferred payment, aiming to create customer lock-in effect, save credit card processing fee and lay the groundwork for entering into new financial services. However the literature related to the influential factors of customers' usage intention toward a deferred payment is scarce. For the study, a multi-group analysis was carried out to find differences between Naver shopping and Coupang. The results revealed that the important factors that affect a deferred payment adoption were compatibility, impulsive buying tendency in Naver shopping, whereas compatibility, relative advantage, additional value in Coupang(listed in order of most important). In addition, impulsive buying tendency had a positive effect on adoption intention in Naver shopping and on perceived risk in Coupang. The results imply that Naver shopping need to focus on managing delinquency while Coupang should provide sufficient information on how late fees and credit rating downgrade work and try not to make a deferred payment option stand out. In order to increase adoption rate it is recommendable to narrow down target segment of a deferred payment and expand it to a specialized vertical such as travel.

CKFont2: An Improved Few-Shot Hangul Font Generation Model Based on Hangul Composability (CKFont2: 한글 구성요소를 이용한 개선된 퓨샷 한글 폰트 생성 모델)

  • Jangkyoung, Park;Ammar, Ul Hassan;Jaeyoung, Choi
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.12
    • /
    • pp.499-508
    • /
    • 2022
  • A lot of research has been carried out on the Hangeul generation model using deep learning, and recently, research is being carried out how to minimize the number of characters input to generate one set of Hangul (Few-Shot Learning). In this paper, we propose a CKFont2 model using only 14 letters by analyzing and improving the CKFont (hereafter CKFont1) model using 28 letters. The CKFont2 model improves the performance of the CKFont1 model as a model that generates all Hangul using only 14 characters including 24 components (14 consonants and 10 vowels), where the CKFont1 model generates all Hangul by extracting 51 Hangul components from 28 characters. It uses the minimum number of characters for currently known models. From the basic consonants/vowels of Hangul, 27 components such as 5 double consonants, 11/11 compound consonants/vowels respectively are learned by deep learning and generated, and the generated 27 components are combined with 24 basic consonants/vowels. All Hangul characters are automatically generated from the combined 51 components. The superiority of the performance was verified by comparative analysis with results of the zi2zi, CKFont1, and MX-Font model. It is an efficient and effective model that has a simple structure and saves time and resources, and can be extended to Chinese, Thai, and Japanese.

Analysis of Resident's Satisfaction and Its Determining Factors on Residential Environment: Using Zigbang's Apartment Review Bigdata and Deeplearning-based BERT Model (주거환경에 대한 거주민의 만족도와 영향요인 분석 - 직방 아파트 리뷰 빅데이터와 딥러닝 기반 BERT 모형을 활용하여 - )

  • Kweon, Junhyeon;Lee, Sugie
    • Journal of the Korean Regional Science Association
    • /
    • v.39 no.2
    • /
    • pp.47-61
    • /
    • 2023
  • Satisfaction on the residential environment is a major factor influencing the choice of residence and migration, and is directly related to the quality of life in the city. As online services of real estate increases, people's evaluation on the residential environment can be easily checked and it is possible to analyze their satisfaction and its determining factors based on their evaluation. This means that a larger amount of evaluation can be used more efficiently than previously used methods such as surveys. This study analyzed the residential environment reviews of about 30,000 apartment residents collected from 'Zigbang', an online real estate service in Seoul. The apartment review of Zigbang consists of an evaluation grade on a 5-point scale and the evaluation content directly described by the dweller. At first, this study labeled apartment reviews as positive and negative based on the scores of recommended reviews that include comprehensive evaluation about apartment. Next, to classify them automatically, developed a model by using Bidirectional Encoder Representations from Transformers(BERT), a deep learning-based natural language processing model. After that, by using SHapley Additive exPlanation(SHAP), extract word tokens that play an important role in the classification of reviews, to derive determining factors of the evaluation of the residential environment. Furthermore, by analyzing related keywords using Word2Vec, priority considerations for improving satisfaction on the residential environment were suggested. This study is meaningful that suggested a model that automatically classifies satisfaction on the residential environment into positive and negative by using apartment review big data and deep learning, which are qualitative evaluation data of residents, so that it's determining factors were derived. The result of analysis can be used as elementary data for improving the satisfaction on the residential environment, and can be used in the future evaluation of the residential environment near the apartment complex, and the design and evaluation of new complexes and infrastructure.

Material Image Classification using Normal Map Generation (Normal map 생성을 이용한 물질 이미지 분류)

  • Nam, Hyeongil;Kim, Tae Hyun;Park, Jong-Il
    • Journal of Broadcast Engineering
    • /
    • v.27 no.1
    • /
    • pp.69-79
    • /
    • 2022
  • In this study, a method of generating and utilizing a normal map image used to represent the characteristics of the surface of an image material to improve the classification accuracy of the original material image is proposed. First of all, (1) to generate a normal map that reflects the surface properties of a material in an image, a U-Net with attention-R2 gate as a generator was used, and a Pix2Pix-based method using the generated normal map and the similarity with the original normal map as a reconstruction loss was used. Next, (2) we propose a network that can improve the accuracy of classification of the original material image by applying the previously created normal map image to the attention gate of the classification network. For normal maps generated using Pixar Dataset, the similarity between normal maps corresponding to ground truth is evaluated. In this case, the results of reconstruction loss function applied differently according to the similarity metrics are compared. In addition, for evaluation of material image classification, it was confirmed that the proposed method based on MINC-2500 and FMD datasets and comparative experiments in previous studies could be more accurately distinguished. The method proposed in this paper is expected to be the basis for various image processing and network construction that can identify substances within an image.

Approximate Dynamic Programming Based Interceptor Fire Control and Effectiveness Analysis for M-To-M Engagement (근사적 동적계획을 활용한 요격통제 및 동시교전 효과분석)

  • Lee, Changseok;Kim, Ju-Hyun;Choi, Bong Wan;Kim, Kyeongtaek
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.4
    • /
    • pp.287-295
    • /
    • 2022
  • As low altitude long-range artillery threat has been strengthened, the development of anti-artillery interception system to protect assets against its attacks will be kicked off. We view the defense of long-range artillery attacks as a typical dynamic weapon target assignment (DWTA) problem. DWTA is a sequential decision process in which decision making under future uncertain attacks affects the subsequent decision processes and its results. These are typical characteristics of Markov decision process (MDP) model. We formulate the problem as a MDP model to examine the assignment policy for the defender. The proximity of the capital of South Korea to North Korea border limits the computation time for its solution to a few second. Within the allowed time interval, it is impossible to compute the exact optimal solution. We apply approximate dynamic programming (ADP) approach to check if ADP approach solve the MDP model within processing time limit. We employ Shoot-Shoot-Look policy as a baseline strategy and compare it with ADP approach for three scenarios. Simulation results show that ADP approach provide better solution than the baseline strategy.

Establishment of a Standard Procedure for Safety Inspections of Bridges Using Drones (드론 활용 교량 안전점검을 위한 표준절차 정립)

  • Lee, Suk Bae;Lee, Kihong;Choi, Hyun Min;Lim, Chi Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.2
    • /
    • pp.281-290
    • /
    • 2022
  • In Korea, the number of national facilities for which a safety inspection is mandatory is increasing, and a safer safety inspection method is needed. This study aimed to increase the efficiency of the bridge safety inspection by enabling rapid exterior inspection while securing the safety of inspectors by using drones to perform the safety inspections of bridges, which had mainly relied on visual inspections. For the research, the Youngjong Grand Bridge in Incheon was selected as a test bed and was divided into four parts: the warren truss, suspension bridge main cable, main tower, and pier. It was possible to establish a five-step standard procedure for drone safety inspections. The step-by-step contents of the standard procedure obtained as a result of this research are: Step 1, facility information collection and analysis, Step 2, analysis of vulnerable parts and drone flight planning, Step 3, drone photography and data processing, Step 4, condition evaluation by external inspection, Step 5, building of external inspection diagram and database. Therefore, if the safety inspections of civil engineering facilities including bridges are performed according to this standard procedure, it is expected that these inspection can be carried out more systematically and efficiently.

Data Augmentation for Tomato Detection and Pose Estimation (토마토 위치 및 자세 추정을 위한 데이터 증대기법)

  • Jang, Minho;Hwang, Youngbae
    • Journal of Broadcast Engineering
    • /
    • v.27 no.1
    • /
    • pp.44-55
    • /
    • 2022
  • In order to automatically provide information on fruits in agricultural related broadcasting contents, instance image segmentation of target fruits is required. In addition, the information on the 3D pose of the corresponding fruit may be meaningfully used. This paper represents research that provides information about tomatoes in video content. A large amount of data is required to learn the instance segmentation, but it is difficult to obtain sufficient training data. Therefore, the training data is generated through a data augmentation technique based on a small amount of real images. Compared to the result using only the real images, it is shown that the detection performance is improved as a result of learning through the synthesized image created by separating the foreground and background. As a result of learning augmented images using images created using conventional image pre-processing techniques, it was shown that higher performance was obtained than synthetic images in which foreground and background were separated. To estimate the pose from the result of object detection, a point cloud was obtained using an RGB-D camera. Then, cylinder fitting based on least square minimization is performed, and the tomato pose is estimated through the axial direction of the cylinder. We show that the results of detection, instance image segmentation, and cylinder fitting of a target object effectively through various experiments.

Transcriptome profiling identifies immune response genes against porcine reproductive and respiratory syndrome virus and Haemophilus parasuis co-infection in the lungs of piglets

  • Zhang, Jing;Wang, Jing;Zhang, Xiong;Zhao, Chunping;Zhou, Sixuan;Du, Chunlin;Tan, Ya;Zhang, Yu;Shi, Kaizhi
    • Journal of Veterinary Science
    • /
    • v.23 no.1
    • /
    • pp.2.1-2.18
    • /
    • 2022
  • Background: Co-infections of the porcine reproductive and respiratory syndrome virus (PRRSV) and the Haemophilus parasuis (HPS) are severe in Chinese pigs, but the immune response genes against co-infected with 2 pathogens in the lungs have not been reported. Objectives: To understand the effect of PRRSV and/or HPS infection on the genes expression associated with lung immune function. Methods: The expression of the immune-related genes was analyzed using RNA-sequencing and bioinformatics. Differentially expressed genes (DEGs) were detected and identified by quantitative real-time polymerase chain reaction (qRT-PCR), immunohistochemistry (IHC) and western blotting assays. Results: All experimental pigs showed clinical symptoms and lung lesions. RNA-seq analysis showed that 922 DEGs in co-challenged pigs were more than in the HPS group (709 DEGs) and the PRRSV group (676 DEGs). Eleven DEGs validated by qRT-PCR were consistent with the RNA sequencing results. Eleven common Kyoto Encyclopedia of Genes and Genomes pathways related to infection and immune were found in single-infected and co-challenged pigs, including autophagy, cytokine-cytokine receptor interaction, and antigen processing and presentation, involving different DEGs. A model of immune response to infection with PRRSV and HPS was predicted among the DEGs in the co-challenged pigs. Dual oxidase 1 (DUOX1) and interleukin-21 (IL21) were detected by IHC and western blot and showed significant differences between the co-challenged pigs and the controls. Conclusions: These findings elucidated the transcriptome changes in the lungs after PRRSV and/or HPS infections, providing ideas for further study to inhibit ROS production and promote pulmonary fibrosis caused by co-challenging with PRRSV and HPS.