• Title/Summary/Keyword: processing temperature

Search Result 3,761, Processing Time 0.029 seconds

Studies on the Optimal Sterilization Conditions of Red Pepper Paste Packed in Retort Pouch. (레토르트 파우치 고추장의 적정 고온 살균조건에 관한 연구)

  • Lee, Shin-Young;Choi, Kook-Chi;Lee, Sang-Kyu
    • Journal of Industrial Technology
    • /
    • v.3
    • /
    • pp.87-94
    • /
    • 1983
  • Heating characteristics of red pepper paste packed in report pouches of various thicknesses and their storage stability were investigated to determine the adequate processing conditions that good bacteriological safty and minimal quality changes could be obtained, when sterilized by using a steam-air system retort. A heat penetration into pouch-packed red pepper paste was carried out through by a conductive heat transfer, indicating a simple logarithmic heating curve, and the smaller thickness revealed the higher heat penetration rate, suggesting the possibility of high temperature-short time sterilization of red pepper paste. The processing conditions with Fo-value of 4.5 or higher were sufficient for keeping up bacterial safty, but based on C-value, better quality retention was obtained at pouch thickness of 15mm under the processing temperature of $120^{\circ}C$. Subsequent storage study revealed that the red pepper paste packed in 15mm and processed at $120^{\circ}C$ with Fo=4.5 could be held without any spoilage and overall acceptance change, when stored for 6 months at room temperature under the relative humidity of 70%. After 3 months storage in $38^{\circ}C$ under saturation humidity, overall acceptance of red pepper paste were judged not to be maintainable on the acceptable level, but it may be suggested that above the results could be kept up a desirable quality without any remarkable deterioration.

  • PDF

Thermomagnetic Characteristics of the Hard Magnetic Materials with a Fine Microstructure due to a HDDR Process

  • Kwon, H.W.;Kim, Yoon-B.;Jeung, W.Y.
    • Journal of Magnetics
    • /
    • v.4 no.1
    • /
    • pp.26-32
    • /
    • 1999
  • The HDDR process can be used as an effective means of processing of the coercive Nd-Fe-B-type or the Sm2Fe17Nx materials. The HDDR (hydrogenation, disproportionation, desorption, recombination) processed materials are feartured with a very fine microstructure. The thermomagnetic characteristics of the Nd-Fe-B-type or the Sm2Fe17Nx materials with fine microstructure due to the HDDR process were investigated. It has been found that the fine-microstructured hard magnetic materials showed an unusual TMA (Thermomagnetic analysis) tracting featured with a low and constant magnetization at lower temperature range and a peak just below their Curie temperatures when a low external field is applied. This thermomagnetic characteristic was immediate particularly in the TMA with a low applied field. This thermomagnetic characteristic was interpreted in terms of the competition between two counteracting effects; the decrease in magnetication due to the thermal agitation at an elevated temperature and the increase in magnetization resulting from the rotation of magnetization of the fine grains comparable to a critical single domain size due to the decreased magnetocrystalline anisotropy at an elevated temperature.

  • PDF

The study on temperature distribution characteristic of irradiated surface by CO2 laser (온도센서를 이용한 CO2레이저 빔 조사면의 온도 분포 특성에 관한 연구)

  • Min, Byoung-Dae;Kim, Tae-Kyun;Chung, Hyun-Ju;Kim, Yong-Cheol;Joung, Jong-Han;Kim, Hee-Je
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1831-1833
    • /
    • 2003
  • Nowadays, CO2 lasers are used widely in many applications such as materials fabrication, communications, remote sensing and military purpose etc. Especially, CO2 lasers are in the spotlight at surface handling and heat processing. It is important to control the laser output power and beam quality in those fields. To increase beam qualify, We used the feedback system by various sensors. Although, CO2 lasers' output beam became feedback, its beam affected the irradiated material target already. Since, ideal real time control have still the problem to solve. Hence, we need the new proposal for more precise laser processing. So we expect the new effect how to change the irradiated material target as the kind of, processing time and output density caused by the CO2 laser beam. In this study, We have investigated the characteristics of the temperature and HAZ(Heat Affected Zone) by CO2 laser output with IR temperature sensor and RTD.

  • PDF

TEC-less Thermal Image Processing Method for Small Arms (소형 화기용 TEC-less 열상 처리 기법)

  • Kwak, Dongmin;Yoon, Joohong;Yang, Dongwon;Lee, Yonghun;Seo, Yongseok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.162-169
    • /
    • 2019
  • This paper describes a thermal image processing algorithm for uncooled type TEC-less IR detector which is applicable to fire control system of small arms. We implemented a real-time gain and offset compensation algorithm based on polynomial approximation from the raw dataset which is acquired by two reference temperature of blackbody from various FPA(Focal Plane Array) temperature. Through the experiment, we analyzed the output characteristics of detector's raw-data and compared IR image quality to traditional non-uniformity correction method. It shows that the proposed method works well in all FPA temperature range with low residual non-uniformity.

The Influence of Treatment Condition During Low Temperature Plasma Carburizing of AISI304L Stainless Steel (AISI304L 강에 저온 플라즈마침탄 처리 시 처리조건에 따른 표면특성평가)

  • Lee, In-Sup
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.56-60
    • /
    • 2011
  • A low temperature plasma carburizing process was performed to AISI 304L austenitic stainless steel to achieve the enhancement of surface hardness without a compromise in their corrosion resistance. Attempts were made to investigate the influence of the processing temperatures on the surface-hardened layer during low temperature plasma carburizng in order to obtain the optimum processing conditions. The expanded austenite (${\gamma}C$) was formed on all the treated surfaces. Precipitates of chromium carbides were detected in the hardened layer (C-enriched layer) only for the specimen treated at $500^{\circ}C$. The hardened layer thickness of ${\gamma}C$ increased up to about $35\;{\mu}m$, with increasing treatment temperature. The surface hardness reached about 1000 $HK_{0.05}$, which is about 4 times higher than that of the untreated sample (250 $HK_{0.05}$). Minor loss in corrosion resistance was observed for the specimens treated at temperatures of $310^{\circ}C-450^{\circ}C$ compared with untreated austenitic stainless steel. Particularly, the precipitation of chromium carbides at $500^{\circ}C$ led to a significant decrease in the corrosion resistance.

Automatic Measurement of Temperature in Real Time by Using an Internal and Data Processing System (인터넷을 이용한 원격 실시간 온도 계측 모니터 및 계측데이터 자동처리 시스템)

  • Kim, Hui-Sik;Kim, Yeong-Il;Seol, Dae-Yeon;Nam, Cheol;O, Heung-Il
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.99-102
    • /
    • 2003
  • In this paper, we have developed a system for monitoring and processing the real time sensor data in remote site through Internet. For realizing this system, measurement equipment and protocol are used to transmit the measurement data to remote server and to process measurement data. In server part, the received data from remote site sensor is converted to text or graphic charts for user. The measurement device in sensor part receives the sensor data form sensor and store the received data to its internal memory for transmitting data to server part through Internet. Also the measurement device can receive data form server. The temperature sensor is corrected to the measurement device located in laboratory and the measurement device measures temperature of laboratory which can be confirmed by user through Internet. We have developed a server program working on the Linux to store measurement data from measurement device to server memory. The program is use for SNMP(Simple Network Management Protocol) to exchange data with measurement device. Also the program changes the measurement data into text and graphic charts for user display. The program is use apache PHP program for user display and inquiry. The real time temperature measurement system can be applly for many parts of industry and living.

  • PDF

New Design Approach for the Uniform Temperature of Precision Hot Plates (초정밀 가열판의 온도 균질화를 위한 새로운 설계방법)

  • Park, Yong-Qwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.11
    • /
    • pp.1525-1533
    • /
    • 2003
  • In the precision hot plate for wafer processing, uniform temperature of the upper plate is one of key factors affecting the quality of wafers. The state-of-the-art precision hot plates require temperature Variations less than $\pm$0.4$^{\circ}C$ during heating to 15$0^{\circ}C$, Which is difficult to be obtained only by the improvement of manufacturing techniques alone. In this study, computer aided heat transfer analysis was carried out to obtain the temperature distribution of the currently used reference hot plate for 200mm wafer. The analysis on the reference model assuming constant heat generation rate and uniform heating area showed total variation of 0.926$^{\circ}C$ at 15$0^{\circ}C$. One of the new design approaches based on the change of heating location together with different heat generation rate resulted in total variation of 0.297$^{\circ}C$ which is a 68% improvement compared to that of the reference model.

Power Cable Ampacity and Influential Factors Analysis under Operation

  • Tong, Qiang;Qi, Jianping;Wang, Yanling;Liang, Likai;Meng, Xiangxing;Zhang, Qiang
    • Journal of Information Processing Systems
    • /
    • v.14 no.5
    • /
    • pp.1136-1149
    • /
    • 2018
  • With the increasing of urban electricity demand, making the most use of the power cable carrying capacity has become an important task in power grid system. Contrary to the rated ampacity obtained under extremely conservative conditions, this paper presents the various steady value of cable ampacity by using the changing surrounding parameters under operation, which is based on cable ampacity calculation equation under the IEC-60287 standard. To some degree, the cable ampacity analysis of actual surroundings improves the transmission capacity of cables. This paper reveals the factors that influence cable ampacity such as insulating layer thickness, allowable long-term conductor temperature, the ambient temperature, soil thermal resistance coefficient, and so on, then gives the class of the influence of these parameters on the ampacity, which plays a great role in accurately calculating the real-time ampacity and improving the utilization rate of cable in the complex external environment condition. Furthermore, the transient thermal rating of the cable is analyzed in this paper, and temperature variation of the conductor under different overload conditions is discussed, which provides effective information for the operation and control of the system.

High temperature deformation behaviors of AZ31 Mg alloy by Artificial Neural Network (인공 신경망을 이용한 AZ31 Mg 합금의 고온 변형 거동연구)

  • Lee B. H.;Reddy N. S.;Lee C. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.231-234
    • /
    • 2005
  • The high temperature deformation behavior of AZ 31 Mg alloy was investigated by designing a back propagation neural network that uses a gradient descent-learning algorithm. A neural network modeling is an intelligent technique that can solve non-linear and complex problems by learning from the samples. Therefore, some experimental data have been firstly obtained from continuous compression tests performed on a thermo-mechanical simulator over a range of temperatures $(250-500^{\circ}C)$ with strain rates of $0.0001-100s^{-1}$ and true strains of 0.1 to 0.6. The inputs for neural network model are strain, strain rate, and temperature and the output is flow stress. It was found that the trained model could well predict the flow stress for some experimental data that have not been used in the training. Workability of a material can be evaluated by means of power dissipation map with respect to strain, strain rate and temperature. Power dissipation map was constructed using the flow stress predicted from the neural network model at finer Intervals of strain, strain rates and subsequently processing maps were developed for hot working processes for AZ 31 Mg alloy. The safe domains of hot working of AZ 31 Mg alloy were identified and validated through microstructural investigations.

  • PDF

Design and Implementation of High Performance System with Reduced Hardware Architecture to Convert a Color Tone (감소된 하드웨어 구조를 가지는 고성능 색조 변환 시스템의 설계 및 구현)

  • 문오학;이호남;이봉근;강봉순;홍창희
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.2 no.4
    • /
    • pp.1-8
    • /
    • 2001
  • In this paper we propose high performance system with reduced hardware architecture to convert a color tone. Conversion for the color tone of a input image is necessary to calculate the color temperature of the image Conventional way of calculating the temperature uses algorithm using the method calculating 2-D chromaticity coordinates. But it requires bulky hardware[1]. This paper propose the color temperature calculation method about 1-D chromaticity coordinates that reduces the hardware complexity while keeping the performance of the 2-D color temperature algorithm . The proposed method is verified by fLCD-TV system using the Xilinx Virtex FPGA XCV 2000E-6BG560 that has 1344*806 resolution and requires a high-speed 65MHz operation.

  • PDF