• Title/Summary/Keyword: processes optimization

Search Result 806, Processing Time 0.025 seconds

Patch Antenna Shape Design Using the Genetic Algorithm (유전 알고리즘을 이용한 패치 안테나 형상 설계)

  • Song, Sung Moon;Kim, Cheolwoong;Lee, Heeseung;Yoo, Jeonghoon
    • Transactions of the Society of Information Storage Systems
    • /
    • v.10 no.2
    • /
    • pp.45-49
    • /
    • 2014
  • This study deals with obtaining the optimal shape of a patch antenna via the topology optimization method in order to enhance its radiation efficiency. The genetic algorithm scheme is proposed for the optimization process to satisfy the design objective. As a result, the optimal patch shape through the proposed process shows highly improved radiation efficiency and reduced scattered effects. Commercial package COMSOL and Matlab programming are employed for the entire optimization and analysis processes.

Optimum Design of Truss on Sizing and Shape with Natural Frequency Constraints and Harmony Search Algorithm (하모니 서치 알고리즘과 고유진동수 제약조건에 의한 트러스의 단면과 형상 최적설계)

  • Kim, Bong-Ik;Kown, Jung-Hyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.5
    • /
    • pp.36-42
    • /
    • 2013
  • We present the optimum design for the cross-sectional(sizing) and shape optimization of truss structures with natural frequency constraints. The optimum design method used in this paper employs continuous design variables and the Harmony Search Algorithm(HSA). HSA is a meta-heuristic search method for global optimization problems. In this paper, HSA uses the method of random number selection in an update process, along with penalty parameters, to construct the initial harmony memory in order to improve the fitness in the initial and update processes. In examples, 10-bar and 72-bar trusses are optimized for sizing, and 37-bar bridge type truss and 52-bar(like dome) for sizing and shape. Four typical truss optimization examples are employed to demonstrate the availability of HSA for finding the minimum weight optimum truss with multiple natural frequency constraints.

Comparison of Structural Types of Proline Pentamer by Quantum Chemical Calculation (QCC)

  • Jae-Ho Sim
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.2
    • /
    • pp.323-329
    • /
    • 2023
  • In this study, Proline pentamer model was used to investigate change in the dihedral angle, intramolecular hydrogen bonding and formation energies during structural optimization. L-Proline (LP, as an imino acid residue) pentamers having four conformation types [β: φ/ψ=t−/t+, α: φ/ψ=g−/g−, PPII: φ/ψ=g−/t+ and Plike: φ/ψ= g−/g+] were carried out by QCC [B3LYP/6-31G(d,p)]. The optimized structure and formation energy were examined for designated structure. In LP, P-like and PPII types did not change by optimization, and β types were transformed into PPII having no H-bond independently of the designated ψ values. PPII was more stable than P-like by about 2.2 kcal/mol/mu. The hydrogen bond distances of d2(4-6) type H-bonds were 1.94 - 2.00Å. In order to understand the processes of the transformations, the changes of φ/ψ, distances of NH-OC (dNH/CO) and formation energies (ΔE, kcal/mol/mu) were examined.

Meta-Heuristic Algorithm Comparison for Droplet Impingements (액적 충돌 현상기반 최적알고리즘의 비교)

  • Joo Hyun Moon
    • Journal of ILASS-Korea
    • /
    • v.28 no.4
    • /
    • pp.161-168
    • /
    • 2023
  • Droplet impingement on solid surfaces is pivotal for a range of spray and heat transfer processes. This study aims to optimize the cooling performance of single droplet impingement on heated textured surfaces. We focused on maximizing the cooling effectiveness or the total contact area at the droplet maximum spread. For efficient estimation of the optimal values of the unknown variables, we introduced an enhanced Genetic Algorithm (GA) and Particle swarm optimization algorithm (PSO). These novel algorithms incorporate its developed theoretical backgrounds to compare proper optimized results. The comparison, considering the peak values of objective functions, computation durations, and the count of penalty particles, confirmed that PSO method offers swifter and more efficient searches, compared to GA algorithm, contributing finding the effective way for the spray and droplet impingement process.

Determination of optimum cyclic scheduling of PSR processes (PSR 공정의 최적 Cyclic Scheduling 결정)

  • Hwang, Deok-Jae;Moon, Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.808-811
    • /
    • 1996
  • A mathematical model was developed for the simulation of a Pressure Swing Adsorption process with dehydrogenation reaction. The minimum number of beds and optimum operating sequence were determined using MINLP under the given operating conditions. Based on these results, we estimated the minimum annual cost.

  • PDF

Roll Wccentricity Control for Cold Strip Rolling Processes (냉간압연 공정에의 편심제어)

  • 백기남;류석환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.243-247
    • /
    • 1991
  • A roll eccentricity controller for a tandem cold rolling process is designed to attenuate the outlet thickness deviation due to roll eccentricity. In order to design the controller, the excess stability margin is maximized by solving a standard H.inf. optimization problem under the requirement that ensure disturbance rejection for a class of disturbance. Robust performance of the proposed controller is checked by a computer simulation.

  • PDF

Optimal Designofa Process-Inventory Network Under Infrequent Shutdowns (간헐적인 운전시간 손실하에 공정-저장조 망구조의 최적설계)

  • Yi, Gyeongbeom
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.6
    • /
    • pp.563-568
    • /
    • 2013
  • The purpose of this study is to find the analytic solution for determining the optimal capacity (lot-size) of a batch-storage network to meet the finished product demand under infrequent shutdowns. Batch processes are bound to experience random but infrequent operating time losses. Two common remedies for these failures are duplicating another process or increasing the process and storage capacity, both of which are very costly in modern manufacturing systems. An optimization model minimizing the total cost composed of setup and inventory holding costs as well as the capital costs of constructing processes and storage units is pursued with the framework of a batch-storage network of which flows are susceptible to infrequent shutdowns. The superstructure of the plant consists of a network of serially and/or parallel interlinked batch processes and storage units. The processes transform a set of feedstock materials into another set of products with constant conversion factors.A novel production and inventory analysis method, the PSW (Periodic Square Wave) model, is applied. The advantage of the PSW model stems from the fact it provides a set of simple analytic solutions in spite of a realistic description of the material flow between processes and storage units. The resulting simple analytic solution can greatly enhance a proper and quick investment decision at the early plant design stagewhen confronted with diverse economic situations.

A Study on Hot Precision Forging Processes for Spline Teethof a Counter Shaft Gear (카운터샤프트 기어의 스플라인 치형 정밀성형을 위한 열간단조 공정에 관한 연구)

  • Kim, H.P.;Kim, H.S.;Kim, Y.J.
    • Design & Manufacturing
    • /
    • v.6 no.2
    • /
    • pp.6-11
    • /
    • 2012
  • A counter shaft gear is an important part in the transmission system of vehicle. Its shape is relatively complicated and should meets high strength. Traditionally the counter shaft gear has been manufactured as follows; a spline body is firstly machined for teeth and then attached to the main gear body by frictional welding, and finally is finished by grinding. Therefore it is necessary to develop a new manufacturing technology eliminating both frictional welding and grinding processes. In this study, a new hot forging process was proposed and designed so that the spline body with teeth and main gear body are formed as one body. Finite element simulations and experimental works were peformed for design of forging processes to get the quality final precision-forged product. Consequently the most suitable blocker process could be obtained.

  • PDF

Optimum Design of the Process Parameter in Sheet Metal Forming with Design Sensitivity Analysis using the Direct Differentiation Approach (II) -Optimum Process Design- (직접미분 설계민감도 해석을 이용한 박판금속성형 공정변수 최적화 (II) -공정 변수 최적화-)

  • Kim, Se-Ho;Huh, Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2262-2269
    • /
    • 2002
  • Process optimization is carried out to determine process parameters which satisfy the given design requirement and constraint conditions in sheet metal forming processes. Sensitivity -based-approach is utilized for the optimum searching of process parameters in sheet metal forming precesses. The scheme incorporates an elasto-plastic finite element method with shell elements . Sensitivities of state variables are calculated from the direct differentiation of the governing equation for the finite element analysis. The algorithm developed is applied to design of the variablc blank holding force in deep drawing processes. Results show that determination of process parameters is well performed to control the major strain for preventing fracture by tearing or to decrease the amount of springback for improving the shape accuracy. Results demonstrate that design of process parameters with the present approach is applicable to real sheet metal forming processes.