• 제목/요약/키워드: process optimization algorithm and system

검색결과 359건 처리시간 0.025초

A Novel Algorithm for Optimal Location of FACTS Devices in Power System Planning

  • Kheirizad, Iraj;Mohammadi, Amir;Varahram, Mohammad Hadi
    • Journal of Electrical Engineering and Technology
    • /
    • 제3권2호
    • /
    • pp.177-183
    • /
    • 2008
  • The particle swarm optimization(PSO) has been shown to converge rapidly during the initial stages of a global search, but around global optimum, the search process becomes very slow. On the other hand, the genetic algorithm is very sensitive to the initial population. In fact, the random nature of the GA operators makes the algorithm sensitive to initial population. This dependence to the initial population is in such a manner that the algorithm may not converge if the initial population is not well selected. In this paper, we have proposed a new algorithm which combines PSO and GA in such a way that the new algorithm is more effective and efficient and can find the optimal solution more accurately and with less computational time. Optimal location of SVC using this hybrid PSO-GA algorithm is found. We have also found the optimal place of SVC using GA and PSO separately and have compared the results. It has been shown that the new algorithm is more effective and efficient. An IEEE 68 bus test system is used for simulation.

다중 섬 유전자 알고리즘 기반 A60 급 격벽 관통 관의 방화설계에 대한 이산변수 근사최적화 (Approximate Optimization with Discrete Variables of Fire Resistance Design of A60 Class Bulkhead Penetration Piece Based on Multi-island Genetic Algorithm)

  • 박우창;송창용
    • 한국기계가공학회지
    • /
    • 제20권6호
    • /
    • pp.33-43
    • /
    • 2021
  • A60 class bulkhead penetration piece is a fire resistance system installed on a bulkhead compartment to protect lives and to prevent flame diffusion in a fire accident on a ship and offshore plant. This study focuses on the approximate optimization of the fire resistance design of the A60 class bulkhead penetration piece using a multi-island genetic algorithm. Transient heat transfer analysis was performed to evaluate the fire resistance design of the A60 class bulkhead penetration piece. For approximate optimization, the bulkhead penetration piece length, diameter, material type, and insulation density were considered discrete design variables; moreover, temperature, cost, and productivity were considered constraint functions. The approximate optimum design problem based on the meta-model was formulated by determining the discrete design variables by minimizing the weight of the A60 class bulkhead penetration piece subject to the constraint functions. The meta-models used for the approximate optimization were the Kriging model, response surface method, and radial basis function-based neural network. The results from the approximate optimization were compared to the actual results of the analysis to determine approximate accuracy. We conclude that the radial basis function-based neural network among the meta-models used in the approximate optimization generates the most accurate optimum design results for the fire resistance design of the A60 class bulkhead penetration piece.

자가적응 화음탐색 알고리즘을 이용한 복합형 최적 구조제어 시스템 설계 (Optimal Design of a Hybrid Structural Control System using a Self-Adaptive Harmony Search Algorithm)

  • 박원석
    • 한국전산구조공학회논문집
    • /
    • 제31권6호
    • /
    • pp.301-308
    • /
    • 2018
  • 이 논문에서는 다중 재난을 고려한 복합 구조제어 시스템의 최적 설계방법을 제시한다. 한 가지 유형의 위험에 대해 하나의 시스템이 설계되는 전형적인 구조제어 시스템과는 달리, 구조물의 지진 및 바람에 의한 진동응답을 저감하기 위해 능동 및 수동제어 시스템에 대한 동시 최적 설계방법을 제안하였다. 수치 예로서, 30층 빌딩 구조물에 설치된 30개의 점성 댐퍼와 복합형 질량 감쇠기에 대한 최적 설계문제를 보였다. 최적화 문제를 풀기 위해 자체적응 화음탐색(harmony search, HS)알고리즘을 채택하였다. 화음탐색 알고리즘은 사람이 연주하는 악기의 튜닝 과정을 모방한 전역 최적화를 위한 메타 휴리스틱 진화 연산방법의 하나이다. 또한 전역 탐색 및 빠른 수렴을 위해 자가적응적이고 동적인 매개변수 조정 알고리즘을 도입하였다. 최적화 설계 결과, 능동 및 수동 시스템이 독립적으로 최적화된 표준적인 복합제어 시스템에 비해 제안한 동시 최적제어 시스템의 성능과 효율성이 우수함을 보였다.

New Bending System Using a Segmented Vacuum Chuck for Stressed Mirror Polishing of Thin Mirrors

  • Kang, Pilseong;Yang, Ho-Soon
    • Current Optics and Photonics
    • /
    • 제1권6호
    • /
    • pp.618-625
    • /
    • 2017
  • In the present research, a new bending system using a segmented vacuum chuck for Stressed Mirror Polishing (SMP) is developed. SMP is a special fabrication method for thin aspheric mirrors, where simple flat or spherical fabrication is applied while a mirror blank is deflected. Since a mirror blank is usually glued to a bending fixture in the conventional SMP process, there are drawbacks such as long curing time, inconvenience of mirror replacement, risk of mirror breakage, and stress concentration near the glued area. To resolve the drawbacks, a new bending system is designed to effectively hold a mirror blank by vacuum. For the developed bending system, the optimal bending load to achieve the designated mirror deflection is found by finite element analysis and an optimization algorithm. With the measurement results of the deflected mirror surfaces with the optimal bending loads, the feasibility of the developed bending system is investigated. As a result, it is shown that the bending system is appropriate for the SMP process.

반도체 공정에 이용되는 레일의 최적설계 (Optimum Design of Rail in Semiconductor Processing)

  • 조재승;김학선;황종균;임오강
    • 한국전산구조공학회논문집
    • /
    • 제17권3호
    • /
    • pp.241-249
    • /
    • 2004
  • 자동반송 시스템인 천장용 호이스트 이송장치는 천장을 반송공간으로 반도체 웨이퍼를 운반하는 장치이며, 분진이나 소음 및 진동에 대단히 민감하다. 구동부와 레일의 접촉에 의해서 발생되는 마찰, 분진 소음 등의 문제를 최소화시키고 구동부와 이재부의 자중에 따른 구조물 자체의 안정성 검토를 수행하기 위해서 레일의 구조해석 및 최적설계가 필요하다. 본 연구에서는 구동부의 자중에 의한 레일의 기울기를 관심영역으로 설정하고, 변위 및 기울기를 최소화시키기 위해서 위상최적화, 근사 최적화 기법을 도입하여 최적화를 수행하였다. 구조해석은 ANSYS를 이용하였고, 3D 모델링은 Pro/Engineer를 이용하였다. 최적화 알고리즘은 수렴성이 높은 순차 이차 계획법인 PLBA(Pshenichny-Lim-Belegundu-Arora) 알고리즘을 사용하였다.

LabView를 이용한 최적 연삭 제어시스템 설계에 관한 연구 (Study on the Design of Optimal Grinding Control System Using LabView)

  • 최정주
    • 한국산학기술학회논문지
    • /
    • 제14권1호
    • /
    • pp.7-12
    • /
    • 2013
  • 본 논문은 연삭 공정의 최적화 알고리즘과 이를 구현하기 위한 방안을 제안하였다. 최적의 연삭 공정 설계를 위해서 최적화 함수를 제안하고 선정된 최적 함수의 해를 구하기 위해 DE(Differential Evolution)알고리즘을 이용하였다. 알고리즘의 구현은 산업현장에서 널리 사용되고 있는 LabView소프트웨어를 통해 구현하였고 컴퓨터 시뮬레이션을 통해 제안된 알고리즘을 검증하였다. 본 논문에서 획득한 최적화 기법은 연삭공정의 가이드라인으로 활용 될 수 있을 것으로 사료된다.

휴리스틱 알고리즘을 이용한 트림 및 힐링 각도 조절 최적화 (Optimized Trim and Heeling Adjustment by Using Heuristic Algorithm)

  • 홍충유;이진욱;박제웅
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2004년도 학술대회지
    • /
    • pp.62-67
    • /
    • 2004
  • Many ships in voyage experience weight and buoyancy distribution change by various reasons such as change of sea water density and waves, weather condition, and consumption of fuel, provisions, etc . The weight and buoyancy distribution change can bring the ships out of allowable trim, heeling angle. In these case, the ships should adjust trim and heeling angle by shifting of liquid cargo or ballasting, deballasting of ballast tanks for recovery of initial state or for a stable voyage. But, if the adjustment is performed incorrectly, ship's safety such as longitudinal strength, intact stability, propeller immersion, wide visibility, minimum forward draft cannot be secured correctly. So it is required that the adjustment of trim and heeling angle should be planned not by human operators but by optimization computer algorithm. To make an optimized plan to adjust trim and heeling angle guaranteeing the ship's safety and quickness of process, Uk! combined mechanical analysis and optimization algorithm. The candidate algorithms for the study were heuristic algorithm, meta-heuristic algorithm and uninformed searching algorithm. These are widely used in various kinds of optimization problems. Among them, heuristic algorithm $A^\ast$ was chosen for its optimality. The $A^\ast$ algorithm is then applied for the study. Three core elements of $A^\ast$ Algorithm consists of node, operator, evaluation function were modified and redefined. And we analyzed the $A^\ast$ algorithm by considering cooperation with loading instrument installed in most ships. Finally, the algorithm has been applied to tanker ship's various conditions such as Normal Ballast Condition, Homo Design Condition, Alternate Loading Condition, Also the test results are compared and discussed to confirm the efficiency and the usefulness of the methodology developed the system.

  • PDF

차량 현가장치 성능향상을 위한 댐퍼 최적화 설계에 대한 연구 (A Study on the Optimization Design of Damper for the Improvement of Vehicle Suspension Performance)

  • 이춘태
    • 드라이브 ㆍ 컨트롤
    • /
    • 제15권4호
    • /
    • pp.74-80
    • /
    • 2018
  • A damper is a hydraulic device designed to absorb or eliminate shock impulses which is acting on the sprung mass of vehicle. It converting the kinetic energy of the shock into another form of energy, typically heat. In a vehicle, a damper reduce vibration of car, leading to improved ride comfort and running stability. Therefore, a damper is one of the most important components in a vehicle suspension system. Conventionally, the design process of vehicle suspensions has been based on trial and error approaches, where designers iteratively change the values of the design variables and reanalyze the system until acceptable design criteria are achieved. Therefore, the ability to tune a damper properly without trial and error is of great interest in suspension system design to reduce time and effort. For this reason, a many previous researches have been done on modeling and simulation of the damper. In this paper, we have conducted optimal design process to find optimal design parameters of damping force which minimize a acceleration of sprung mass for a given suspension system using genetic algorithm.

A Privacy-preserving and Energy-efficient Offloading Algorithm based on Lyapunov Optimization

  • Chen, Lu;Tang, Hongbo;Zhao, Yu;You, Wei;Wang, Kai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권8호
    • /
    • pp.2490-2506
    • /
    • 2022
  • In Mobile Edge Computing (MEC), attackers can speculate and mine sensitive user information by eavesdropping wireless channel status and offloading usage pattern, leading to user privacy leakage. To solve this problem, this paper proposes a Privacy-preserving and Energy-efficient Offloading Algorithm (PEOA) based on Lyapunov optimization. In this method, a continuous Markov process offloading model with a buffer queue strategy is built first. Then the amount of privacy of offloading usage pattern in wireless channel is defined. Finally, by introducing the Lyapunov optimization, the problem of minimum average energy consumption in continuous state transition process with privacy constraints in the infinite time domain is transformed into the minimum value problem of each timeslot, which reduces the complexity of algorithms and helps obtain the optimal solution while maintaining low energy consumption. The experimental results show that, compared with other methods, PEOA can maintain the amount of privacy accumulation in the system near zero, while sustaining low average energy consumption costs. This makes it difficult for attackers to infer sensitive user information through offloading usage patterns, thus effectively protecting user privacy and safety.

A Novel Efficiency Optimization Strategy of IPMSM for Pump Applications

  • Zhou, Guangxu;Ahn, Jin-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • 제4권4호
    • /
    • pp.515-520
    • /
    • 2009
  • According to the operating characteristics of pump applications, they should exhibit high efficiency and energy saving capabilities throughout the whole operating process. A novel efficiency optimization control strategy is presented here to meet the high efficiency demand of a variable speed Permanent Magnet Synchronous Motor (PMSM). The core of this strategy is the excellent integration of mended maximum torque to the current control algorithm, based on the losses model during the dynamic and the grade search method with changed step by fuzzy logic during the steady. The performance experiments for the control system of a variable speed high efficiency PMSM have been completed. The test results verified that the system can reliably operate with a different control strategy during dynamic and steady operation, and the system exhibits better performance when using the efficiency-optimization control.