• Title/Summary/Keyword: process noise

Search Result 2,982, Processing Time 0.029 seconds

Numerical analysis of the impulsive noise generation and propagation using high order scheme (고차의 수치적 기법을 적용한 충격소음의 생성 및 전파 해석)

  • Kim, Min-Woo;Kim, Sung-Tae;Kim, Kyu-Hong;Lee, Soo-Gab
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1494-1498
    • /
    • 2007
  • Impulsive shooting noise is basically complex phenomenon which contains the linear and non-linear characteristics. For those reasons, numerical analysis of impulsive shooting noise has the difficulties in control of the numerical stability and accuracy on the simulation. In this research, Wave-number Extended Finite Volume Scheme (WEFVS) is applied to the numerical analysis of impulsive shooting noise. In the muzzle blast flow simulation, the generation of the precursor wave and the induced vortex ring are observed. Consequently, blast wave. vortex ring interaction and vortex ring. bow shock wave interaction are evaluated on the shooting process using the accurate and stable scheme. The sound generation in the interactions can be explained by the vorticity transport theorem. The shear layer is evolved behind the projectiles due to the jet flow. In these computations, the impulsive shooting noise is generated by the complex interaction with shooting process and is propagated to the far-field boundary. The impulsive shooting noise generation can be observed by the applications of WEFVS and analyzed by the physical phenomena.

  • PDF

CAE-based DFSS Study for Road Noise Reduction (Road Noise 개선을 위한 CAE 기반 DFSS Study)

  • Kwon, Woo-Sung;Yoo, Bong-Jun;Kim, Byoung-Hoon;Kim, In-Dong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.735-741
    • /
    • 2011
  • In the early phase of vehicle development, CAE is conducted as tool for vehicle performance assessment. To maintain acceptable road noise performance, solution for reduced vehicle sensitivity is required. Chassis interface dynamic stiffness characteristics are key component to isolating vibration and noise of road from the vehicle interior. This research provide how to set up the optimized dynamic characteristics under noise effect through DFSS study. CAE-based DOE is performed to build prediction math model, CMS process involves DOE to achieve very fast run times while giving results very comparable. Minimized $95^{th}$ percentile of performance distribution is applied to minimize vehicle sensitivity and road noise levels variation during the optimization process. Finally, the results of optimization were reviewed for performance and robustness.

  • PDF

A Study on Radiation Noise of Vehicle Power Seat Recliner using Finite Element Analysis (유한요소해석을 이용한 차량용 파워 시트 리클라이너의 방사 소음에 관한 연구)

  • Kim, Sung-Yuk;Kim, Key-Sun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.1
    • /
    • pp.101-107
    • /
    • 2018
  • In this study, the analysis of radiation noise and chattering noise of vehicle seat recliner was conducted through testing and analysis. First, operating noise was measured by seat back frame and recliner, and chattering noise was confirmed. Next, the transient dynamic analysis was performed, and the result was mapped to the acoustic analysis. Finally, the test and analysis were compared and analyzed. The results are as follow. First, it was found that the peaks appeared in common in the range of 620~650Hz, 1,240~1,290 Hz, and 1,840~1,940 Hz. It was judged that the dynamic characteristics of the recliner system overlapped with the rotation component of the motor to cause amplification of noise and vibration. Next, as a result of imaging the radiation noise analysis, it was judged that the noise radiated in the forward and backward direction has a greater influence than the direction of the rotation axis when the ear position of the person is taken as a reference.

Investigation Study on Noise and Vibration Condition in Construction Site (건설공사장 소음.진동 실태조사에 관한 연구)

  • Sun, Hyo-Sung;Park, Young-Min;Jo, Youn-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.879-881
    • /
    • 2008
  • The construction noise and vibration is a serious social problem in the downtown. This results in many expenses and delays of construction process because of the satisfactory settlement of popular complaints. In this study, we analyze the dispute mediation cases on the damages of construction noise and vibration and the noise and vibration condition in construction sites by using questionnaire surveys.

  • PDF

Design of Low Noise Airfoil for Use on Small Wind Turbines (소형 풍력발전기 소음 저감을 위한 익형 설계 연구)

  • Kim, Tae-Hyung;Lee, Seung-Min;Kim, Ho-Geon;Lee, Soo-Gab
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.465-465
    • /
    • 2009
  • Wind power is one of the most reliable renewable energy sources and the installed wind turbine capacities are increasing radically every year. Although wind power has been favored by the public in general, the problem with the impact of wind turbine noise on people living in the vicinity of the turbines has been increased. Low noise wind turbine design is becoming more important as noise is spreading more adverse effect of wind turbine to public. This paper demonstrates the design of 10 kW class wind turbines, each of three blades, a rotor diameter 6.4m, a rated rotating speed 200 rpm and a rated wind speed 10 m/s. The optimized airfoil is dedicated for the 75% spanwise position because the dominant source of a wind turbine blade has been known as trailing edge noise from the outer 25% of the blade. Numerical computations are performed for incompressible flow and for Mach number at 0.145 and for Reynolds numbers at $1.02{\times}10^6$ with a lift performance, which is resistant to surface contamination and turbulence intensity. The objective in the low design process is to reduce noise emission, while sustaining high aerodynamic efficiency. Dominant broadband noise sources are predicted by semi-empirical formulas composed of the groundwork by Brooks et al. and Lowson associated with typical wind turbine operation conditions. During the airfoil redesign process, the aerodynamic performance is analyzed to minimize the wind turbine power loss. The results obtained from the design process show that the design method is capable of designing airfoils with reduced noise using a commercial 10 kW class wind turbine blade airfoil as a basis. The new optimized airfoil clearly indicates reduction of total SPL about 3 dB and higher aerodynamic performance.

  • PDF

Impulse Noise Removal using Noise Density based Switching Mask Filter (잡음밀도 기반의 스위칭 마스크 필터를 사용한 임펄스 잡음 제거)

  • Cheon, Bong-Won;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.253-255
    • /
    • 2022
  • Thanks to the 4th industrial revolution and the development of various communication media, technologies such as artificial intelligence and automation are being grafted into industrial sites in various fields, and accordingly, the importance of data processing is increasing. Image noise removal is a pre-processing process for image processing, and is mainly used in fields requiring high-level image processing technology. Various studies have been conducted to remove noise, but various problems arise in the process of noise removal, such as image detail preservation, texture restoration, and noise removal in a special area. In this paper, we propose a switching mask filter based on the noise intensity to preserve the detailed image information during the impulse noise removal process. The proposed filter algorithm obtains the final output by switching to the extended mask when it is determined that the density is higher than the reference value when noise is determined in the area designated as the filtering mask. Simulation was conducted to evaluate the performance of the proposed algorithm, and the performance was analyzed compared to the existing method.

  • PDF

Dedicated hardware implementation for real time noise elimination of 2-valued image (실시간 처리를 위한 2차 화상의 잡음 제거 전용 하드웨어 구성)

  • Park, In-Jung;Lee, Dong-Chan
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.243-246
    • /
    • 1988
  • A lot of time is required in order to the process of loop repeating the preprocessing operated in the software. Specially in the preprocessing, most of the time is used for the noise elimination such a software algorithm component of a noise elimination hardware, this can operate quickly the process.

  • PDF

A Study on Optimal Design of Panel Shape of a Body Structure for Reduction of Interior Noise

  • Kim, Hyo-Sig;Yoon, Seong-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.694-698
    • /
    • 2006
  • This paper presents an optimal design process using beads on a body panel to improve interior noise of a passenger vehicle. Except modification of structural members, it is difficult to find effective countermeasures that can work for the intermediate frequency range from 100 Hz to 300 Hz which lies between the booming and low medium frequency. In this study, it is a major goal to find additional counter-measures for this intermediate frequency range by performing optimal design of beads on body panels. The proposed method for design optimization consists of 4 sub-steps, that is, a) problem definition, b) cause analysis, c) countermeasure development and d) validation. The objective function is minimization of interior noise level. The major design variables are the geometrical shape of a bead and combination of beads on the critical panels. Sensitivity analysis and optimization are performed according to the predefined process for an optimal design. It is verified that the proposed design decreases the level of noise transfer function above 5 dB.

  • PDF

Application of Time-Frequency Analysis as a Tool for Noise Quality Control of DC Motor Systems (DC 모터계의 소음 품질관리를 위한 시간-주파수 분석의 적용)

  • 임상규;최창환
    • Journal of KSNVE
    • /
    • v.9 no.4
    • /
    • pp.841-848
    • /
    • 1999
  • In the quality assurance check process of DC motor systems, even though the overall sound pressure level is acceptable, there is an incident that subjective evaluation leads to failure in product quality due to annoying noise. This kind of problem may be originated from the manufacturing or assembly process. In this paper, the transient spectral analysis, or the time-frequency analysis is applied to the noise quality problem. For the case study, the cause of annoying noise in the wind shield wiper motor is experimentally analyzed in detail. It is concluded that the defect in the shaft causes the impact noise which is not detectable by steady spectral analysis. Also demonstrated is how the time-frequency analysis is effectively applied to the annoying noise identification of the rotor-gear system.

  • PDF

A Sturdy on WLAN RFIC VCO based on InGaP/GaAs HBT (InGaP/GaAs HBT를 이용한 WLAN 용 Low Noise RFIC VCO)

  • Myoung, Seong-Sik;Park, Jae-Woo;Cheon, Sang-Hoon;Yook, Jong-Gwan
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.155-159
    • /
    • 2003
  • This paper presents fully integrated 5 GHz band low phase noise LC tank VCO. The implemented VCO is tuned by integrated PN diode and tuning rage is $5.01{\sim}5.30$ GHz under $0{\sim}3 V$ control voltage. For good phase noise performance, LC filtering technique, common in Si CMOS process, is used, and to prevent degradation of phase noise performance by collector shot-noise and to reduce power dissipation the HBT is biased at low collector current density bias point. The measured phase noise is -87.8 dBc/Hz at 100 kHz offset frequency and -111.4 dBc/Hz at 1 MHz offset frequency which is good performance. Moreover phase noise is improved by roughly 5 dEc by LC filter. It is the first experimental result in InGaP/GaAs HBT process. The figure of merit of the fabricated VCO with LC filter is -172.1 dBc/Hz. It is the best result among 5 GHz InGaP HBT VCOs. Moreover this work shows lower DC power consumption, higher output power and more fixed output power compared with previous 4, 5 GHz band InGaP HBT VCOs.

  • PDF