본 논문에서는 산업 공정, 설비 및 모터 드라이브에 적용되는 고장 진단 및 고장 허용 제어 기술의 기본 개념, 접근법과 연구 동향에 대해서 개괄적으로 기술하였다. 산업 공정을 위한 고장 진단의 주요 역할은 공정의 결함 상태를 파악할 수 있는 효과적인 지표를 만든 후 고장이나 위험한 사고에 대해 적절한 조치를 취하는 것이다. 산업 공정에 패턴이 있는지 특정 프로세스 변수가 정상적으로 동작하는지 확인하기 위해 많은 고장 검출 및 진단 기법이 개발되었다. 먼저 본 논문에서는 데이터 기반 기법과 모델 기반 기법에 대하여 살펴본다. 두 번째로 산업 공정을 위한 고장 검출 및 진단 기법을 살펴본다. 세 번째로 수동형 및 능동형 고장 허용 제어 기법을 살펴본다. 마지막으로 AC 모터 드라이브에서 발생하는 주요 고장을 열거, 그 특성을 살펴보고 이를 위한 고장 진단 및 고장 허용 제어 기술을 살펴본다.
본 연구에서는 PEM 연료전지 온도 센서의 고장을 감지 및 판별할 수 있는 모델 기반 센서 고장 감지 방법이 적용된다. 연료전지 차량이 작동하는 과정에서 스택 온도는 연료전지의 내구성에 영향을 미친다. 따라서 고장 진단 알고리즘이 고장 신호를 감지하는 것은 중요하다. 센서 고장 감지의 주요 목적은 연료전지 시스템의 안정적인 작동을 보장하여 고온과 저온으로부터 스택을 보호하는 것이다. 상태 공간에 기반한 패러티 방정식이 스택 온도와 냉각수 입구 온도와 같은 센서 고장을 감지하는데 적용되며, 잔차는 정상적인 온도 신호와 비교된다. 그리고 잔차는 현재의 센서 고장을 감지하는 다양한 고장 시나리오에 의해 평가된다. 결론적으로, 본 연구에서 설계된 고장 알고리즘이 고장 신호를 감지할 수 있다.
In this paper, intelligent methods using digital protective relay in power supervisory control system is developed in order to protect power systems by means of timely fault detection and diagnosis during operation for induction motor which has various load environments and capacities in power systems. The spectrum pattern of input currents was used to monitor to state of induction motors, and by clustering the spectrum pattern of input currents, the newly occurrence of spectrums pattern caused by faults were detected. For diagnosis of the fault detected, the fuzzy fault tree was derived, and the fuzzy relation equation representing the relation between an induction motor fault and each fault type, was solved. The solution of the fuzzy relation equation shows the possibility of each fault's occurring. The results obtained are summarized as follows: 1) The test result on the basis of KEMC1120 and IEC60255, show that the operation time error of the digital motor protective relay is improved within ${\pm}5%$. 2) Using clustering algorithm by unsupervisory learning, an on-line fault detection method, not affected by the characteristics of loads and rates, was implemented, and the degree of dependency by experts during fault detection was reduced. 3) With the fuzzy fault tree, fault diagnosis process became systematic and expandable to the whole system, and the diagnosis for sub-systems can be made as an object-oriented module.
Fault diagnosis and condition monitoring for rotating machines are important for efficiency and accident prevention. The process of fault diagnosis is to extract the feature of signals and to classify each state. Conventionally, fault diagnosis has been developed by combining signal processing techniques for spectral analysis and pattern recognition, however these methods are not able to diagnose correctly for certain rotating machines and some faulty phenomena. In this paper, we add a minimum detection error algorithm to the previous method to reduce detection error rate. Vibration signals of the induction motor are measured and divided into subband signals. Each subband signal is processed to obtain the RMS, standard deviation and the statistic data for constructing the feature extraction vectors. We make a study of the fault diagnosis system that the feature extraction vectors are applied to K-means clustering algorithm and minimum detection error algorithm.
제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
/
pp.589-594
/
1993
This paper presents a fault detection strategy that discriminates the faulty sensor and that detects the component fault using a bank of observers for the system in which sensor fault and component fault can occur simultaneously. Observers as many as the number of measurements are designed, and each observer uses measurements excluding sequentially one measurement, to estimate the state variables. The faulty sensor can be found out by comparing each state variable from different observer. Next, component fault can be detected by using measurements from the sensors excluding the faulty sensor. The suggested strategy is applied to a nonisothermal, series reaction with unknown reaction kinetics in a CSTR. This strategy is found out to perform well even in the case that the sensor and component fault occur simultaneously. Since each observer is designed to be independent of reaction kinetics, this strategy is not affected by the model uncertainty and nonlinearity of the reaction kinetics.
A natural way to cope with fault tolerant control (FTC) problems is to modify the control parameters according to an online identification of the system parameters when a fault occurs. However. due to not only difficulties Inherent to the online multivariable identification in closed-loop systems, such as modeling errors, noise or the lack of excitation signals, but also long time requirement to identify the post-fault system and implemeutation of control problems during the identification process, we propose an alternative approach based on the observer-based fault detection and isolation (FDI) and model reference adaptive control (MRAC). The proposed robust fault diagnosis method is based on a bank of observers. We also propose a model reference adaptive control with changeable reference models according to the occurred faults. Simulation results of a flight control example show the validity and applicability of the proposed algorithms.
This paper proposes that the relative transmittance and emission intensity measured via optical emission spectroscopy (OES) is a useful for fault detection of reactive ion etch process. With the increased requests for non-invasive as well as real-time plasma process monitoring for fault detection and classification (FDC), OES is suggested as a useful diagnostic tool that satisfies both of the requirements. Relative optical transmittance and emission intensity of oxygen plasma acquired from various process conditions are directly compared with the process variables, such as RF power, oxygen flow and chamber pressure. The changes of RF power and Pressure are linearly proportional to the emission intensity while the change of gas flow can be detected with the relative transmittance.
JSTS:Journal of Semiconductor Technology and Science
/
제11권1호
/
pp.1-5
/
2011
To enter next process control, numerous approaches, including run-to-run (R2R) process control and fault detection and classification (FDC) have been suggested in semiconductor manufacturing industry as a facilitation of advanced process control. This paper introduces a novel type of optical plasma process monitoring system, called plasma eyes chromatic system (PECSTM) and presents its potential for the purpose of fault detection. Qualitatively comparison of optically acquired signal levels vs. process parameter modifications are successfully demonstrated, and we expect that PECSTM signal can be a useful indication of onset of process change in real-time for advanced process control (APC).
Arshad, Muhammad Zeeshan;Nawaz, Javeria;Park, Jin-Su;Shin, Sung-Won;Hong, Sang-Jeen
한국진공학회:학술대회논문집
/
한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
/
pp.241-241
/
2012
Semiconductor industry has been taking the advantage of improvements in process technology in order to maintain reduced device geometries and stringent performance specifications. This results in semiconductor manufacturing processes became hundreds in sequence, it is continuously expected to be increased. This may in turn reduce the yield. With a large amount of investment at stake, this motivates tighter process control and fault diagnosis. The continuous improvement in semiconductor industry demands advancements in process control and monitoring to the same degree. Any fault in the process must be detected and classified with a high degree of precision, and it is desired to be diagnosed if possible. The detected abnormality in the system is then classified to locate the source of the variation. The performance of a fault detection system is directly reflected in the yield. Therefore a highly capable fault detection system is always desirable. In this research, time series modeling of the data from an etch equipment has been investigated for the ultimate purpose of fault diagnosis. The tool data consisted of number of different parameters each being recorded at fixed time points. As the data had been collected for a number of runs, it was not synchronized due to variable delays and offsets in data acquisition system and networks. The data was then synchronized using a variant of Dynamic Time Warping (DTW) algorithm. The AutoRegressive Integrated Moving Average (ARIMA) model was then applied on the synchronized data. The ARIMA model combines both the Autoregressive model and the Moving Average model to relate the present value of the time series to its past values. As the new values of parameters are received from the equipment, the model uses them and the previous ones to provide predictions of one step ahead for each parameter. The statistical comparison of these predictions with the actual values, gives us the each parameter's probability of fault, at each time point and (once a run gets finished) for each run. This work will be extended by applying a suitable probability generating function and combining the probabilities of different parameters using Dempster-Shafer Theory (DST). DST provides a way to combine evidence that is available from different sources and gives a joint degree of belief in a hypothesis. This will give us a combined belief of fault in the process with a high precision.
The reliability enhancement is the critical issue in many computer applications, particulary in process control system. In this paper we describe how to achieve the reliability improvement in control system which is based on multiprocessors. The proposed method is accomplished by using the techniques of fault detection which composed by internal and external fault detections, fault isolation for removing the fault propagation, safety action for driving safe input, and fault diagnosis. This approach is experimented and asopted in boiler backup control system constructed by VMEbus system, CPU boards, graphic system, and other interface boards with UNIX operating system.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.