• Title/Summary/Keyword: process fault detection

Search Result 273, Processing Time 0.028 seconds

The Comparative Software Cost Model of Considering Logarithmic Fault Detection Rate Based on Failure Observation Time (로그형 관측고장시간에 근거한 결함 발생률을 고려한 소프트웨어 비용 모형에 관한 비교 연구)

  • Kim, Kyung-Soo;Kim, Hee-Cheul
    • Journal of Digital Convergence
    • /
    • v.11 no.11
    • /
    • pp.335-342
    • /
    • 2013
  • In this study, reliability software cost model considering logarithmic fault detection rate based on observations from the process of software product testing was studied. Adding new fault probability using the Goel-Okumoto model that is widely used in the field of reliability problems presented. When correcting or modifying the software, finite failure non-homogeneous Poisson process model. For analysis of software cost model considering the time-dependent fault detection rate, the parameters estimation using maximum likelihood estimation of inter-failure time data was made. In this research, Software developers to identify the best time to release some extent be able to help is considered.

Multiple Fault Diagnosis Method by Modular Artificial Neural Network (모듈신경망을 이용한 다중고장 진단기법)

  • 배용환;이석희
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.2
    • /
    • pp.35-44
    • /
    • 1998
  • This paper describes multiple fault diagnosis method in complex system with hierarchical structure. Complex system is divided into subsystem, item and component. For diagnosing this hierarchical complex system, it is necessary to implement special neural network. We introduced Modular Artificial Neural Network(MANN) for this purpose. MANN consists of four level neural network, first level for symptom classification, second level for item fault diagnosis, third level for component symptom classification, forth level for component fault diagnosis. Each network is multi layer perceptron with 7 inputs, 30 hidden node and 7 outputs trained by backpropagation. UNIX IPC(Inter Process Communication) is used for implementing MANN with multitasking and message transfer between processes in SUN workstation. We tested MANN in reactor system.

  • PDF

A Study on Fault Detection of Cycle-based Signals using Wavelet Transform (웨이블릿을 이용한 주기 신호 데이터의 이상 탐지에 관한 연구)

  • Lee, Jae-Hyun;Kim, Ji-Hyun;Hwang, Ji-Bin;Kim, Sung-Shick
    • Journal of the Korea Society for Simulation
    • /
    • v.16 no.4
    • /
    • pp.13-22
    • /
    • 2007
  • Fault detection of cycle-based signals is typically performed using statistical approaches. Univariate SPC using few representative statistics and multivariate analysis methods such as PCA and PLS are the most popular methods for analyzing cycle-based signals. However, such approaches are limited when dealing with information-rich cycle-based signals. In this paper, process fault defection method based on wavelet analysis is proposed. Using Haar wavelet, coefficients that well reflect the process condition are selected. Next, Hotelling's $T^2$ chart using selected coefficients is constructed for assessment of process condition. To enhance the overall efficiency of fault detection, the following two steps are suggested, i.e. denoising method based on wavelet transform and coefficient selection methods using variance difference. For performance evaluation, various types of abnormal process conditions are simulated and the proposed algorithm is compared with other methodologies.

  • PDF

A Fault Detection System for Wind Power Generator Based on Intelligent Clustering Method (지능형 클러스터링 기법에 기반한 풍력발전 고장 검출 시스템)

  • Moon, Dae-Sun;Kim, Seon-Kook;Kim, Sung-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.1
    • /
    • pp.27-33
    • /
    • 2013
  • Nowadays, the utilization of renewable energy sources like wind energy is considered one of the most effective means of generating massive amounts of electricity. This is evident in the rapid increase of wind farms all over the world which comprise a huge number of wind turbines. However, the drawback of utilizing wind turbines is that it requires maintenance, which could be a costly operation. To keep the wind turbines in pristine condition so as to reduce downtime, the implementation of CMS (Condition Monitoring System) and FDS (Fault Detection System) is mandatory. The efficiency and accuracy of these systems are crucial in deciding when to carry out a maintenance process. In this paper, a fault detection system based on intelligent clustering method is proposed. Using SCADA data, the clustering model was trained and evaluated for its accuracy through rigorous simulations. Results show that the proposed approach is able to accurately detect the deteriorating condition of a wind turbine as it nears a downtime period.

Fault Detection with OES and Impedance at Capacitive Coupled Plasmas

  • Choe, Sang-Hyeok;Jang, Hae-Gyu;Chae, Hui-Yeop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.499-499
    • /
    • 2012
  • This study was evaluated on etcher of capacitive coupled plasmas with OES (Optical Emission Spectroscopy) and impedance by VI probe that are widely used for process control and monitoring at semiconductor industry. The experiment was operated at conventional Ar and C4F8 plasma with variable change such as pressure and addition of gas (Atmospheric Leak: N2 and O2), RF, pressure, that are highly possible to impact wafer yield during wafer process, in order to observe OES and VI Probe signals. The sensitivity change on OES and Impedance by Vi probe was analyzed by statistical method to determine healthy of process. The main goal of this study is to understand unwanted tool performance to eventually improve productive capability. It is important for process engineers to actively adjust tool parameter before any serious problem occurs.

  • PDF

High Speed Parallel Fault Detection Design for SRAM on Display Panel

  • Jeong, Kyu-Ho;You, Jae-Hee
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.806-809
    • /
    • 2007
  • SRAM cell array and peripheral circuits on display panel are designed using LTPS process. To overcome low yield of SOP, high speed parallel fault detection circuitry for memory cells is designed at local I/O lines with minimal overhead for efficient memory cell redundancy replacement. Normal read/write and parallel test read/write are simulated and verified.

  • PDF

A residual generator for fault detection/isolation of a class of nonlinear systems (비선형 공정의 고장검출을 위한 잔차발생알고리즘)

  • Ryu, Ji-Su;Lee, Sang-Moon;Lee, Kee-Sang;Park, Tae-Geon
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2230-2232
    • /
    • 2004
  • A residual generation scheme that can be employed in the process fault detection and isolation systems for a class of nonlinear (control) systems is suggested. Although the scheme is a kind of observer scheme, the design of the observers employed for residual generation is very simple and the order of the observer is very low. In spite of the simplicity, the residual generation scheme provides the same information for the detection and isolation of the anticipated faults as the conventional multiple observer based schemes. The residuals may be structured so that fault isolation can be performed by pre-selected logic. An FDIS using the residual generation scheme is constructed and evaluated for a nonlinear DC motor system.

  • PDF

Faults detection and identification for gas turbine using DNN and LLM

  • Oliaee, Seyyed Mohammad Emad;Teshnehlab, Mohammad;Shoorehdeli, Mahdi Aliyari
    • Smart Structures and Systems
    • /
    • v.23 no.4
    • /
    • pp.393-403
    • /
    • 2019
  • Applying more features gives us better accuracy in modeling; however, increasing the inputs causes the curse of dimensions. In this paper, a new structure has been proposed for fault detecting and identifying (FDI) of high-dimensional systems. This structure consist of two structure. The first part includes Auto-Encoders (AE) as Deep Neural Networks (DNNs) to produce feature engineering process and summarize the features. The second part consists of the Local Model Networks (LMNs) with LOcally LInear MOdel Tree (LOLIMOT) algorithm to model outputs (multiple models). The fault detection is based on these multiple models. Hence the residuals generated by comparing the system output and multiple models have been used to alarm the faults. To show the effectiveness of the proposed structure, it is tested on single-shaft industrial gas turbine prototype model. Finally, a brief comparison between the simulated results and several related works is presented and the well performance of the proposed structure has been illustrated.

A Fault Diagnosis Methodology for Module Process of TFT-LCD Manufacture Using Support Vector Machines (SVM을 이용한 TFT-LCD 모듈공정의 불량 진단 방안)

  • Shin, Hyun-Joon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.4
    • /
    • pp.93-97
    • /
    • 2010
  • Fast incipient fault diagnosis is becoming one of the key requirements for economical and optimal process operation management in high-tech industries. Artificial neural networks have been used to detect faults for a number of years and shown to be highly successful in this application area. This paper presents a novel test technique for fault detection and classification for module process of TFT-LCD manufacture using support vector machines (SVMs). In order to evaluate SVMs, this paper examines the performance of the proposed method by comparing it with that of multilayer perception, one of the artificial neural network techniques, based on real benchmarking data.

Application of Symbolic Representation Method for Fault Detection and Clustering in Semiconductor Fabrication Processes (반도체공정 이상탐지 및 클러스터링을 위한 심볼릭 표현법의 적용)

  • Loh, Woong-Kee;Hong, Sang-Jeen
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.11
    • /
    • pp.806-818
    • /
    • 2009
  • Since the invention of the integrated circuit (IC) in 1950s, semiconductor technology has undergone dramatic development up to these days. A complete semiconductor is manufactured through a diversity of processes. For better semiconductor productivity, fault detection and classification (FDC) has been rigorously studied for finding faults even before the processes are completed. For FDC, various kinds of sensors are attached in many semiconductor manufacturing devices, and sensor values are collected in a periodic manner. The collection of sensor values consists of sequences of real numbers, and hence is regarded as a kind of time-series data. In this paper, we propose an algorithm for detecting and clustering faults in semiconductor processes. The proposed algorithm is a modification of the existing anomaly detection algorithm dealing with symbolically-represented time-series. The contributions of this paper are: (1) showing that a modification of the existing anomaly detection algorithm dealing with general time-series could be used for semiconductor process data and (2) presenting experimental results for improving correctness of fault detection and clustering. As a result of our experiment, the proposed algorithm caused neither false positive nor false negative.