• Title/Summary/Keyword: proceeding bearing

Search Result 2,015, Processing Time 0.028 seconds

A study on ultimate bearing capacity of foundations on jointed rock mass (암반 위에 위치한 기초의 지지력 평가에 관한 연구)

  • Choi, Go-Ny;Yoo, Chung-Sik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.420-429
    • /
    • 2009
  • This study concerns bearing capacity of shallow and deep foundations on jointed rock mass. The main focus of this research lies on getting insight into the applicability of bearing capacity estimation methods developed by other researchers. First, an extensive literature review was performed on previous studies concerning bearing capacity of foundation on jointed rock mass. Second, a parametric study on a number of jointed rock conditions using the finite-element analysis. The results of the analysis were then compared with those computed by the bearing capacity estimation method.

  • PDF

A Study on the Rolling Bearing Failure Mode of Automotive Transmission(I) (자동차 변속기용 구름베어링의 파손현상 고찰(I))

  • 현준수;문호근;박태조
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.406-411
    • /
    • 2001
  • This paper shows the failure(wear) phenomena of automotive transmission bearings and investigate their characteristics. It was found that the wear mechanism was mainly abrasive wear by the presence of particles in the gear box and the balls was weared more severely than the other tribological contacting parts. The wear of balls alter the bearing contact angle and load ratings, and finally it cause the bearing failure. With close examination of the failed bearing, various countermeasures could be suggested.

  • PDF

A study on hydrostatic characteristics of air-lubricated journal bearing using multi-leaf type foils (다엽형상의 포일을 사용한 공기 저널 베어링의 정특성에 관한 연구)

  • 김태호;이용복;김창호;이남수;장건희
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.177-185
    • /
    • 2000
  • The characteristics of multi-leaf feil bearing are investigated. The Foil bearing is preloaded and has several leaf foils modeled by curved beams. An analysis of the air foil bearing was performed, considering effects of foil deflection and compressible lubrication equation simultaneously. A parametric study shows that the number of foils significantly affect the static characteristics of air foil bearings and describes what the minimum film thickness means. The results include pressure profile, load capacity, dimensionless torque and minimum film thickness in the foil bearing.

  • PDF

Coupled Boundary Effects on a Gas Lubricated Bearing far a Scaled-Up Micro Gas Turbine

  • Hyunduck Kwak;Lee, Yong-Bok;Kim, Chang-Ho;Gunhee Jang
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.243-249
    • /
    • 2000
  • In case of the limitation of Deep RIE fabrication for Micro Gas Turbine, bearing aspect ratio is limited in very small value. The characteristics such as pressure distribution load capacity and non-linearity of a short bearing of L/D=0.083 and a conventional bearing of L/D=1.0 with coupled boundary effects are investigated far Micro Gas Tlubine bearings. The coupled efffect was analyzed by mass conservation at coupled end area. The results, increasing load capacity and non-linearity due to the coupled effect of thrust and journal bearing, are obtained and the selection of journal bearing type is discussed.

  • PDF

An Analysis of Load Characteristics of Air-Lubricated Herringbone Groove Journal Bearing By Finite Element Method (공기윤활 빗살무늬 저널베어링의 부하특성에 대한 유한요소해석)

  • 박신욱;임윤철
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.353-362
    • /
    • 2000
  • Herringbone groove journal bearing (HGJB) is developed to improve the static and dynamic performances of hydrodynamic journal bearing. In this study, static and dynamic compressible isothermal lubrication problems are analyzed by the finite element method together with the Newton-Raphson iterative procedure. This analysis is introduced for prediction of the static and dynamic characteristics of air lubricated HGJB for various bearing configurations. The bearing load characteristics and dynamic characteristics are dependent on geometric parameters such as asymmetric ratio, groove depth ratio, groove width ratio and groove angle.

  • PDF

An Experimental Study on Porous Air Bearing Stiffness Characteristics (다공질 공기 베어링의 강성 특성에 관한 실험 연구)

  • Jung, Soon-Chul;Lee, Seong-Hyuk;Lee, Jae-Eung;Ji, Hong-Kyu;Lee, Dong-Jin;Ryu, Je-Hyoung;Choi, Hyoung-Gil;Kim, Hyuk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.75-78
    • /
    • 2005
  • In this paper, an experimental study on porous air bearing stiffness for ultra precision positioning system was performed. In general manufacturer provide bearing stiffness under specific air pressure, but the air pressure used in the field is different. Therefore it is necessary to know the stiffness of air bearing under the pressure used in the field. In order to know that, experimental device which can realize actual operating conditions was made. Using this device, static and dynamic stiffness of air bearing can be obtained. As a result, displacement error occurred around 1 $\mu$m at recommended load.

  • PDF

Influence of Pad-Pivot Friction on the Performance of Tilting-Pad proceeding Bearing (패드와 피봇 사이의 마찰이 틸팅패드 저널베어링에 미치는 영향)

  • Kim, Sung-Gi;Kim, Kyung-Woong;Ha, Hyun-Cheon
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1016-1021
    • /
    • 2004
  • The need for developing a mathematical model for pad-pivot friction in tilting pad proceeding bearings has been well-recognized, since previous experimental work about the performances of the bearings hypothesized that the friction in the bearings is closely related to their performances. Especially, the sliding friction between pad and pivot in the ball and socket type of the bearings can influence the performance of the bearing. We propose a mathematical model for pad-pivot friction in the ball and socket type, which considers the geometrics of the pad and pivot of the bearings, by assuming the sliding friction in the ball and socket bearing as Coulomb friction. By utilizing the proposed model for pad-pivot friction, we show the analysis of Reynolds equation and energy equation, which explain the thermo-hydrodynamic characteristics of tilting pad proceeding bearings, by taking into account the turbulence and inlet pressure building as well. The results of the study show that the performance of titling-pad proceeding bearings can be greatly influenced by the pad-pivot friction. In particular, we have shown that the analysis of the pad-pivot friction is useful to explain the static proceeding loci and the dynamic characteristics of the ball and socket type of the bearings. Furthermore, for a given operating condition, we can obtain various equilibrium states which satisfy the static equilibrium conditions, by considering the pad-pivot friction.

  • PDF

The Measurement of the Bearing Stiffness (베어링 강성 측정)

  • Kim, Sang-Uk;Kim, Jin-Hwan;Kim, Yong-Geun;Kim, Bo-Youl;Kim, Young-Bong
    • Proceedings of the KIEE Conference
    • /
    • 2006.10b
    • /
    • pp.216-220
    • /
    • 2006
  • This paper is presented for the measurement of the bearing stiffness for the spindle motors. BLDC Spindle Motors for the Hard Disk Drive are used by several kinds of the bearings, such as ball bearing, fluid dynamic bearing, and aero dynamic bearing. The spindle motors are attached the platters to read and write the data. Because the platter rotates at high end speed with the load and can be shocked from a suddenly moving, the bearing needs the rated stiffness with the pressure. By the way, it has not been realized to measure the real stiffness for each bearing types. In this paper, we proposed the method of measuring the stiffness for the bearings by using the magnet force. Experimental results show the performance to measure the bearing stiffness of the BLDC spindle motors for an HDD.

  • PDF

Analysis of a Journal and Thrust FDB and a Conical FDB in the Spindle Motor of a Computer Hard Disk Drive (HDD 스핀들 모터용 저널-스러스트 유체동압 베어링과 코니컬 유체동압 베어링의 특성해석비교)

  • Kim, Bum-Cho;Jang, Gun-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.478-483
    • /
    • 2005
  • This paper presents the comparison analysis of a Journal and thrust FDB (fluid dynamic bearing) and a conical FDB in a HDD spindle motor. The Reynolds equation is appropriately transformed to describe journal, thrust and conical bearing. Finite element method is applied to analyze the FDB by satisfying the continuity of mass and pressure at the interface between the hearings. The pressure field of the bearings is numerically approximated by applying the Reynolds boundary condition. The load and friction torque are obtained by integrating the pressure and the velocity gradient along the fluid film. The flying height of the spindle motor is measured to verify the proposed analytical result. This research shows that the conical bearing generates bigger load capacity and less friction torque than the journal and thrust bearing in a HDD spindle motor.

  • PDF

A Numerical Analysis on the Rotordynamic Characteristics of A Hybrid Journal Bearing with Pair-Type Angled Injection Orifices (짝(Pair)형태의 경사 공급구를 갖는 하이브리드 저널 베어링의 로터 동특성에 관한 수치해석)

  • 김창호;이용복
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.111-121
    • /
    • 1997
  • The stability of a rotor-bearing system supported by swirl-controlled hybrid journal bearing with pair-type angled injection orifices is investigated for improvement of the whirl frequency ratio by allowing effective control of the tangential flow inside the bearing clearance, i.e., by achieving more freedom in controlling strength and direction of the supply tangential flow inside the bearing clearance. It is suggested that the system instability can be improved through the change of bearing dynamic characteristic parameters with the swirl control. The orifice diameter d$_0$ and recess injection angle $\alpha$ along with combinations of swirl/anti-swirl supply pressures and directions (3.0-3.0MPa, 4.0-2.0MPa, 2.0-4.0MPa) are selected for design parameters for swirl-controlled effective factors dependent on journal speeds (3000, 9000, 15000, 21000 rpm). It has been found that the orifice diameter do shows strong effects on effective maneuverability of direct-stiffness and direct damping values, while recess injection angle $\alpha$ results in substantial magnitude and direction of cross-stiffness. Specifically, recess injection parameters which are functions of angle of orifice feeding flow and recess dimensions showed very feasible effect on the stability of swirl-controlled rotor-bearing system.

  • PDF