• Title/Summary/Keyword: problem-solving reasoning

Search Result 277, Processing Time 0.022 seconds

Development of Citizenship Promoting Home Economics Education Curriculum through Critical Literacy: Focusing on Housing Area of Middle School (비판적 리터러시를 통한 시민성 함양 가정과 교육과정 개발: 중학교 주생활 영역을 중심으로)

  • Oh, Kyungseon
    • Journal of Korean Home Economics Education Association
    • /
    • v.33 no.2
    • /
    • pp.57-80
    • /
    • 2021
  • The purpose of this research is to develop a Home Economics education curriculum that can promote citizenship through critical literacy. To this end, the 'housing' area in the 2015 revised curriculum of home economics and textbooks were analyzed from a critical literacy perspective. Using Laster(1986)'s critical science curriculum development course and "A Teacher's guideFamily, Food and Society"(Staaland & Storm, 1996), a 'Citizenship raising curriculum of home economics education in the housing area.' was developed. The results of this research are as follows. First, when the the curriculum was examined, the teaching objectives of the overall subject, or the achievement criteria, learning elements, and evluative methods of the housing area consisted of practical problem solving curriculum that can include critical literacy content. In addition, as a result of analyzing the text of the three textbooks' housing areas, it was found that most of them were described as adapting to and coping with the current culture, and few problems or social issues were mentioned that could lead to critical literacy. Second, the housing area curriculum for critical literacy learning was developed, with a total of 13 plan of 7 modules including continuous interests, valued ends, learning contents, and 26 learning materials including reading materials, and video materials. Based on the findings, the next curriculum and textbook should address social issues related to critical literacy and various classes of housing, and teachers' communities and training should be operated to support teachers who can be examplary for practical reasoning and critical thinking.

Impact of Direct Structured Instruction for Students with Learning Disabilities on Engineering Physics Concepts (공대 물리학 교육에서 학습장애자에 대한 직접교수법의 효과)

  • Hwang, Un-Hak
    • Journal of Practical Engineering Education
    • /
    • v.14 no.1
    • /
    • pp.19-25
    • /
    • 2022
  • This study examined the impact of direct structured approach of students who demonstrate little or no sense of basic engineer concepts in physics courses. This direct structured instruction is one of the methodologies that focuses on explicit and systematic practices in which an instructor set clear learning outcomes and clarifies the direction of the instruction. 90 participants were randomly selected and tested on the areas of problem-solving skills, reasoning, working memory, and processing speed. 20% of the participants were found to be students with basic engineering disabilities. On the other hand, in the direct structured group, 51.7% and 58.0% of the sample group (90 students) showed a 6.3% increase from the mid-term to final examinations, respectively. The subgroups with 50% or lower grades were decreased from 26.7% to 24.5%. However, five students with the lowest grade of 20% were selected as students with learning disabilities in the study and the average scores of mid-term and final exams were increased by 8.6%, which was 17.9% and 26.5%, respectively at the end of the study. As a result, it showed that direct structured approach for students with learning disabilities in the engineer concepts was effective.

Features of sample concepts in the probability and statistics chapters of Korean mathematics textbooks of grades 1-12 (초.중.고등학교 확률과 통계 단원에 나타난 표본개념에 대한 분석)

  • Lee, Young-Ha;Shin, Sou-Yeong
    • Journal of Educational Research in Mathematics
    • /
    • v.21 no.4
    • /
    • pp.327-344
    • /
    • 2011
  • This study is the first step for us toward improving high school students' capability of statistical inferences, such as obtaining and interpreting the confidence interval on the population mean that is currently learned in high school. We suggest 5 underlying concepts of 'discretion of contingency and inevitability', 'discretion of induction and deduction', 'likelihood principle', 'variability of a statistic' and 'statistical model', those are necessary to appreciate statistical inferences as a reliable arguing tools in spite of its occasional erroneous conclusions. We assume those 5 concepts above are to be gradually developing in their school periods and Korean mathematics textbooks of grades 1-12 were analyzed. Followings were found. For the right choice of solving methodology of the given problem, no elementary textbook but a few high school textbooks describe its difference between the contingent circumstance and the inevitable one. Formal definitions of population and sample are not introduced until high school grades, so that the developments of critical thoughts on the reliability of inductive reasoning could not be observed. On the contrary of it, strong emphasis lies on the calculation stuff of the sample data without any inference on the population prospective based upon the sample. Instead of the representative properties of a random sample, more emphasis lies on how to get a random sample. As a result of it, the fact that 'the random variability of the value of a statistic which is calculated from the sample ought to be inherited from the randomness of the sample' could neither be noticed nor be explained as well. No comparative descriptions on the statistical inferences against the mathematical(deductive) reasoning were found. Few explanations on the likelihood principle and its probabilistic applications in accordance with students' cognitive developmental growth were found. It was hard to find the explanation of a random variability of statistics and on the existence of its sampling distribution. It is worthwhile to explain it because, nevertheless obtaining the sampling distribution of a particular statistic, like a sample mean, is a very difficult job, mere noticing its existence may cause a drastic change of understanding in a statistical inference.

  • PDF

Development of Music Recommendation System based on Customer Sentiment Analysis (소비자 감성 분석 기반의 음악 추천 알고리즘 개발)

  • Lee, Seung Jun;Seo, Bong-Goon;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.4
    • /
    • pp.197-217
    • /
    • 2018
  • Music is one of the most creative act that can express human sentiment with sound. Also, since music invoke people's sentiment to get empathized with it easily, it can either encourage or discourage people's sentiment with music what they are listening. Thus, sentiment is the primary factor when it comes to searching or recommending music to people. Regard to the music recommendation system, there are still lack of recommendation systems that are based on customer sentiment. An algorithm's that were used in previous music recommendation systems are mostly user based, for example, user's play history and playlists etc. Based on play history or playlists between multiple users, distance between music were calculated refer to basic information such as genre, singer, beat etc. It can filter out similar music to the users as a recommendation system. However those methodology have limitations like filter bubble. For example, if user listen to rock music only, it would be hard to get hip-hop or R&B music which have similar sentiment as a recommendation. In this study, we have focused on sentiment of music itself, and finally developed methodology of defining new index for music recommendation system. Concretely, we are proposing "SWEMS" index and using this index, we also extracted "Sentiment Pattern" for each music which was used for this research. Using this "SWEMS" index and "Sentiment Pattern", we expect that it can be used for a variety of purposes not only the music recommendation system but also as an algorithm which used for buildup predicting model etc. In this study, we had to develop the music recommendation system based on emotional adjectives which people generally feel when they listening to music. For that reason, it was necessary to collect a large amount of emotional adjectives as we can. Emotional adjectives were collected via previous study which is related to them. Also more emotional adjectives has collected via social metrics and qualitative interview. Finally, we could collect 134 individual adjectives. Through several steps, the collected adjectives were selected as the final 60 adjectives. Based on the final adjectives, music survey has taken as each item to evaluated the sentiment of a song. Surveys were taken by expert panels who like to listen to music. During the survey, all survey questions were based on emotional adjectives, no other information were collected. The music which evaluated from the previous step is divided into popular and unpopular songs, and the most relevant variables were derived from the popularity of music. The derived variables were reclassified through factor analysis and assigned a weight to the adjectives which belongs to the factor. We define the extracted factors as "SWEMS" index, which describes sentiment score of music in numeric value. In this study, we attempted to apply Case Based Reasoning method to implement an algorithm. Compare to other methodology, we used Case Based Reasoning because it shows similar problem solving method as what human do. Using "SWEMS" index of each music, an algorithm will be implemented based on the Euclidean distance to recommend a song similar to the emotion value which given by the factor for each music. Also, using "SWEMS" index, we can also draw "Sentiment Pattern" for each song. In this study, we found that the song which gives a similar emotion shows similar "Sentiment Pattern" each other. Through "Sentiment Pattern", we could also suggest a new group of music, which is different from the previous format of genre. This research would help people to quantify qualitative data. Also the algorithms can be used to quantify the content itself, which would help users to search the similar content more quickly.

The Persuit of Rationality and the Mathematics Education (합리성의 추구와 수학교육)

  • Kang Wan
    • The Mathematical Education
    • /
    • v.24 no.2
    • /
    • pp.105-116
    • /
    • 1986
  • For any thought and knowledge, its growth and development has close relation with the society where it is developed and grow. As Feuerbach says, the birth of spirit needs an existence of two human beings, i. e. the social background, as well as the birth of body does. But, at the educational viewpoint, the spread and the growth of such a thought or knowledge that influence favorably the development of a society must be also considered. We would discuss the goal and the function of mathematics education in relation with the prosperity of a technological civilization. But, the goal and the function are not unrelated with the spiritual culture which is basis of the technological civilization. Most societies of today can be called open democratic societies or societies which are at least standing such. The concept of rationality in such societies is a methodological principle which completes the democratic society. At the same time, it is asserted as an educational value concept which explains comprehensively the standpoint and the attitude of one who is educated in such a society. Especially, we can considered the cultivation of a mathematical thinking or a logical thinking in the goal of mathematics education as a concept which is included in such an educational value concept. The use of the concept of rationality depends on various viewpoints and criterions. We can analyze the concept of rationality at two aspects, one is the aspect of human behavior and the other is that of human belief or knowledge. Generally speaking, the rationality in human behavior means a problem solving power or a reasoning power as an instrument, i. e. the human economical cast of mind. But, the conceptual condition like this cannot include value concept. On the other hand, the rationality in human knowledge is related with the problem of rationality in human belief. For any statement which represents a certain sort of knowledge, its universal validity cannot be assured. The statements of value judgment which represent the philosophical knowledge cannot but relate to the argument on the rationality in human belief, because their finality do not easily turn out to be true or false. The positive statements in science also relate to the argument on the rationality in human belief, because there are no necessary relations between the proposition which states the all-pervasive rule and the proposition which is induced from the results of observation. Especially, the logical statement in logic or mathematics resolves itself into a question of the rationality in human belief after all, because all the logical proposition have their logical propriety in a certain deductive system which must start from some axioms, and the selection and construction of an axiomatic system cannot but depend on the belief of a man himself. Thus, we can conclude that a question of the rationality in knowledge or belief is a question of the rationality both in the content of belief or knowledge and in the process where one holds his own belief. And the rationality of both the content and the process is namely an deal form of a human ability and attitude in one's rational behavior. Considering the advancement of mathematical knowledge, we can say that mathematics is a good example which reflects such a human rationality, i. e. the human ability and attitude. By this property of mathematics itself, mathematics is deeply rooted as a good. subject which as needed in moulding the ability and attitude of a rational person who contributes to the development of the open democratic society he belongs to. But, it is needed to analyze the practicing and pursuing the rationality especially in mathematics education. Mathematics teacher must aim the rationality of process where the mathematical belief is maintained. In fact, there is no problem in the rationality of content as long the mathematics teacher does not draw mathematical conclusions without bases. But, in the mathematical activities he presents in his class, mathematics teacher must be able to show hem together with what even his own belief on the efficiency and propriety of mathematical activites can be altered and advanced by a new thinking or new experiences.

  • PDF

Developing and Applying the Questionnaire to Measure Science Core Competencies Based on the 2015 Revised National Science Curriculum (2015 개정 과학과 교육과정에 기초한 과학과 핵심역량 조사 문항의 개발 및 적용)

  • Ha, Minsu;Park, HyunJu;Kim, Yong-Jin;Kang, Nam-Hwa;Oh, Phil Seok;Kim, Mi-Jum;Min, Jae-Sik;Lee, Yoonhyeong;Han, Hyo-Jeong;Kim, Moogyeong;Ko, Sung-Woo;Son, Mi-Hyun
    • Journal of The Korean Association For Science Education
    • /
    • v.38 no.4
    • /
    • pp.495-504
    • /
    • 2018
  • This study was conducted to develop items to measure scientific core competency based on statements of scientific core competencies presented in the 2015 revised national science curriculum and to identify the validity and reliability of the newly developed items. Based on the explanations of scientific reasoning, scientific inquiry ability, scientific problem-solving ability, scientific communication ability, participation/lifelong learning in science presented in the 2015 revised national science curriculum, 25 items were developed by five science education experts. To explore the validity and reliability of the developed items, data were collected from 11,348 students in elementary, middle, and high schools nationwide. The content validity, substantive validity, the internal structure validity, and generalization validity proposed by Messick (1995) were examined by various statistical tests. The results of the MNSQ analysis showed that there were no nonconformity in the 25 items. The confirmatory factor analysis using the structural equation modeling revealed that the five-factor model was a suitable model. The differential item functioning analyses by gender and school level revealed that the nonconformity DIF value was found in only two out of 175 cases. The results of the multivariate analysis of variance by gender and school level showed significant differences of test scores between schools and genders, and the interaction effect was also significant. The assessment items of science core competency based on the 2015 revised national science curriculum are valid from a psychometric point of view and can be used in the science education field.

Interpretation of depositional setting and sedimentary facies of the late Cenozoic sediments in the southern Ulleung Basin margin, East Sea(Sea of Japan), by an expert system, PLAYMAKER2 (PLAYMAKER2, 전문가 시스템을 이용한 동해 울릉분지 남부 신생대 후기 퇴적층의 퇴적환경 해석)

  • Cheong Daekyo
    • The Korean Journal of Petroleum Geology
    • /
    • v.6 no.1_2 s.7
    • /
    • pp.20-24
    • /
    • 1998
  • Expert system is one type of artificial intelligence softwares that incorporate problem-solving knowledges and experiences of human experts by use of symbolic reasoning and rules about a specific topic. In this study, an expert system, PLAYMAKER2, is used to interpret sedimentary facies and depositional settings of the sedimentary sequence. The original version of the expert system, PLAYMAKER, was developed in University of South Carolina in 1990, and modified into the present PLAYMAKER2 with some changes in the knowledge-base of the previous system. The late Cenozoic sedimentary sequence with maximum 10,000 m in thickness, which is located in the Korean Oil Exploration Block VI-1 at the southwestern margin of the Ulleung Basin, is analysed by the expert system, PLAYMAKER2. The Cenozoic sedimentary sequence is divided into two units-lower Miocene and upper Pliocene-Pleistocene sediments. The depositional settings and sedimentary facies of the Miocene sediments interpreted by PLAYMAKER2 in terms of belief values are: for depositional settings, slope; $57.4\%$, shelf; $21.4\%$, basin; $10.1\%$, and for sedimentary facies, submarine fan; $35.7\%$, continental slope; $26.3\%$, delta; $16.1\%$, deep basinplain; $6.1\%$ continental shelf; $3.2\%$, shelf margin; $1.4\%$. The depositional settings and sedimentary facies of the Pliocene-Pleistocene sediments in terms of belief values we: for depositional settings, slope; $59.0\%$, shelf; $22.8\%$, basin; $7.0\%$, and for sedimentary facies, delta; $24.1\%$, continental slope; $22.2\%$, submarine fan; $17.3\%$, continental shelf; $7.0\%$, deep basinplain; $4.8\%$, shelf margin; $2.6\%$. The comparison of the depositional settings and sedimentary facies consulted by PLAYMAKER2 with those of the classical interpretation from previous studies shows resonable similarity for the both sedimentary units-the lower Miocene sediments and the upper Pliocene-Pleistocene sediments. It demonstrates that PLAYMAKER2 is an efficient tool to interpret the depositional setting and sedimentary facies for sediments. However, to be a more reliable system, many sedimentologists should work to refine and add geological rules in the knowledge-base of the expert system, PLAYMAKER2.

  • PDF