• Title/Summary/Keyword: problem solving approach

Search Result 863, Processing Time 0.029 seconds

Instructional Effects of a Problem Solving Model on Students' Achievement, Science Process Skills, and Perceptions of Science Activities (문제 해결식 교수 방법이 학생의 성취도, 과학 과정 기술, 과학 활동 인식에 미치는 효과)

  • Noh, Tae-Hee;Kim, Dong-Youn;Kim, Hye-Kyung;Hong, Eun-Kyung;Kang, Suk-Jin;Chae, Woo-Ki;Noh, Suk-Goo
    • Journal of The Korean Association For Science Education
    • /
    • v.17 no.1
    • /
    • pp.45-53
    • /
    • 1997
  • The purpose of this study was to investigate the instructional effects of a problem solving model on students' achievement, science process skills, and perceptions of science activities. The problem solving model was developed on the basis of the SSCS (Search, Solve, Create, Share) problem solving model while considering Korean educational situations under a national curriculum. The model developed is composed of 4 stages; identify, solve, create, and share. In this research, the treatment and control groups (6 classes) were selected from a middle school in Seoul and taught about the separation of mixture for four weeks. Prior to instruction, the Group Assessment of Logical Thinking and the Learning Approach Questionnaire were administered, and their scores were used as covariate and blocking variable, respectively. During instruction, classroom observations for each group were conducted with a researcher-made checklist. Immediately following the instructions, students' achievement, science process skills, and perceptions of science activities were measured by a researcher-made achievement test, the Middle Grades Integrated Science Process Skills Test(MIPT), and the Perceptions of Science Activities Questionnaire, respectively. The results indicated that students in the treatment group achieved significantly better than those in the control group. Although students in the treatment group were found to use more science process skills correctly during their science activities, the MIPT scores of the treatment group were not significantly higher than those of the control group. No interaction with students' learning approach was found for both students' achievement and science process skills. On the questionnaire of students' perceptions of science activities, the treatment group showed more positive perceptions and interest than the control group. Educational implications are discussed.

  • PDF

A FAST NUMERICAL METHOD FOR SOLVING A REGULARIZED PROBLEM ASSOCIATED WITH OBSTACLE PROBLEMS

  • Yuan, Daming;Li, Xi;Lei, Chengfeng
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.5
    • /
    • pp.893-905
    • /
    • 2012
  • Kirsi Majava and Xue-Cheng Tai [12] proposed a modified level set method for solving a free boundary problem associated with unilateral obstacle problems. The proximal bundle method and gradient method were applied to solve the nonsmooth minimization problems and the regularized problem, respectively. In this paper, we extend this approach to solve the bilateral obstacle problems and employ Rung-Kutta method to solve the initial value problem derived from the regularized problem. Numerical experiments are presented to verify the efficiency of the methods.

SOLVING SECOND ORDER SINGULARLY PERTURBED DELAY DIFFERENTIAL EQUATIONS WITH LAYER BEHAVIOR VIA INITIAL VALUE METHOD

  • GEBEYAW, WONDWOSEN;ANDARGIE, AWOKE;ADAMU, GETACHEW
    • Journal of applied mathematics & informatics
    • /
    • v.36 no.3_4
    • /
    • pp.331-348
    • /
    • 2018
  • In this paper, an initial value method for solving a class of singularly perturbed delay differential equations with layer behavior is proposed. In this approach, first the given problem is modified in to an equivalent singularly perturbed problem by approximating the term containing the delay using Taylor series expansion. Then from the modified problem, two explicit Initial Value Problems which are independent of the perturbation parameter, ${\varepsilon}$, are produced: the reduced problem and boundary layer correction problem. Finally, these problems are solved analytically and combined to give an approximate asymptotic solution to the original problem. To demonstrate the efficiency and applicability of the proposed method three linear and one nonlinear test problems are considered. The effect of the delay on the layer behavior of the solution is also examined. It is observed that for very small ${\varepsilon}$ the present method approximates the exact solution very well.

Instability of (Heterogeneous) Euler beam: Deterministic vs. stochastic reduced model approach

  • Ibrahimbegovic, Adnan;Mejia-Nava, Rosa Adela;Hajdo, Emina;Limnios, Nikolaos
    • Coupled systems mechanics
    • /
    • v.11 no.2
    • /
    • pp.167-198
    • /
    • 2022
  • In this paper we deal with classical instability problems of heterogeneous Euler beam under conservative loading. It is chosen as the model problem to systematically present several possible solution methods from simplest deterministic to more complex stochastic approach, both of which that can handle more complex engineering problems. We first present classical analytic solution along with rigorous definition of the classical Euler buckling problem starting from homogeneous beam with either simplified linearized theory or the most general geometrically exact beam theory. We then present the numerical solution to this problem by using reduced model constructed by discrete approximation based upon the weak form of the instability problem featuring von Karman (virtual) strain combined with the finite element method. We explain how such numerical approach can easily be adapted to solving instability problems much more complex than classical Euler's beam and in particular for heterogeneous beam, where analytic solution is not readily available. We finally present the stochastic approach making use of the Duffing oscillator, as the corresponding reduced model for heterogeneous Euler's beam within the dynamics framework. We show that such an approach allows computing probability density function quantifying all possible solutions to this instability problem. We conclude that increased computational cost of the stochastic framework is more than compensated by its ability to take into account beam material heterogeneities described in terms of fast oscillating stochastic process, which is typical of time evolution of internal variables describing plasticity and damage.

A resource-constrained job shop scheduling problem with general precedence constraints

  • Ahn, Jaekyoung
    • Korean Management Science Review
    • /
    • v.10 no.1
    • /
    • pp.171-192
    • /
    • 1993
  • In this paper, a rule for dispatching operations, named the Most Dissimilar Resources (MDR) dispatching rule is presented. The MDR dispatching rule has been designed to maximize utilization of resources in a resource-constrained job shop with general precedence constraints. In shown that solving the above scheduling problem with the MDR dispatching rule is equivalent to multiple solving of the maximum clique problem. A graph theoretic approach is used to model the latter problem. The pairwise counting heuristic of computational time complexity O(n$^{2}$) is developed to solve the maximum clique problem. An attempt is made to combine the MDR dispatching rule with the existing look-ahead dispatching rules. Computational experience indicates that the combined MDR dispatching rules provide solutions of better quality and consistency than the dispatching rules tested in a resource-constrained job shop.

  • PDF

Development of Fuzzy Objective Functioin for Establishing the Region Correspondence

  • Soh, Young-sung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.2 no.3
    • /
    • pp.22-28
    • /
    • 1992
  • One of the challenging problems in dynamic scene analysis is the correspondence problem. Points and lines have been two major entities for establishing the correspondence among suxcessive frmes and gave rise to discrete approach to dynamic scene analysis. SOme researchers take continuous approach to analyse the motion. There it is usually assumed that some sort of region correspondence has already been established. In this paper, we propose a method based on fuzzy membership function for solving region correspondence problem.

  • PDF

An Integrated Approach to Teaching and Learning College Mathematics

  • Ahuja, Om P.;Jahangiri, Jay M.
    • Research in Mathematical Education
    • /
    • v.7 no.1
    • /
    • pp.11-24
    • /
    • 2003
  • The key features of our integrated approach to teaching and loaming college mathematics include interactive and discussion-based teaching, small group work, computer as a tool, problem solving approach, open approach, mathematics in context, emphasis on mathematical thinking and creativity, and writing/communicating about mathematics. In this paper we report a few examples to illustrate the type of problems we use in our integrated approach.

  • PDF

A Global Graph-based Approach for Transaction and QoS-aware Service Composition

  • Liu, Hai;Zheng, Zibin;Zhang, Weimin;Ren, Kaijun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.7
    • /
    • pp.1252-1273
    • /
    • 2011
  • In Web Service Composition (WSC) area, services selection aims at selecting an appropriate candidate from a set of functionally-equivalent services to execute the function of each task in an abstract WSC according to their different QoS values. In despite of many related works, few of previous studies consider transactional constraints in QoS-aware WSC, which guarantee reliable execution of Composite Web Service (CWS) that is composed by a number of unpredictable web services. In this paper, we propose a novel global selection-optimal approach in WSC by considering both transactional constraints and end-to-end QoS constraints. With this approach, we firstly identify building rules and the reduction method to build layer-based Directed Acyclic Graph (DAG) model which can model transactional relationships among candidate services. As such, the problem of solving global optimal QoS utility with transactional constraints in WSC can be regarded as a problem of solving single-source shortest path in DAG. After that, we present Graph-building algorithms and an optimal selection algorithm to explain the specific execution procedures. Finally, comprehensive experiments are conducted based on a real-world web service QoS dataset. The experimental results show that our approach has better performance over other competing selection approaches on success ratio and efficiency.

Reconstruction and application of reforming textbook problems for mathematical modeling process (수학적 모델링 과정을 반영한 교과서 문제 재구성 예시 및 적용)

  • Park, SunYoung;Han, SunYoung
    • The Mathematical Education
    • /
    • v.57 no.3
    • /
    • pp.289-309
    • /
    • 2018
  • There has been a gradually increasing focus on adopting mathematical modeling techniques into school curricula and classrooms as a method to promote students' mathematical problem solving abilities. However, this approach is not commonly realized in today's classrooms due to the difficulty in developing appropriate mathematical modeling problems. This research focuses on developing reformulation strategies for those problems with regard to mathematical modeling. As the result of analyzing existing textbooks across three grade levels, the majority of problems related to the real-world focused on the Operating and Interpreting stage of the mathematical modeling process, while no real-world problem dealt with the Identifying variables stage. These results imply that the textbook problems cannot provide students with any chance to decide which variables are relevant and most important to know in the problem situation. Following from these results, reformulation strategies and reformulated problem examples were developed that would include the Identifying variables stage. These reformulated problem examples were then applied to a 7th grade classroom as a case study. From this case study, it is shown that: (1) the reformulated problems that included authentic events and questions would encourage students to better engage in understanding the situation and solving the problem, (2) the reformulated problems that included the Identifying variables stage would better foster the students' understanding of the situation and their ability to solve the problem, and (3) the reformulated problems that included the mathematical modeling process could be applied to lessons where new mathematical concepts are introduced, and the cooperative learning environment is required. This research can contribute to school classroom's incorporation of the mathematical modeling process with specific reformulating strategies and examples.

A Case Study on Application of Web-based PBL to Practical Health Administrative Affairs (웹 기반 PBL을 적용한 원무관리실무 수업에 관한 사례연구)

  • Kim, Minkyung;Shin, Kyeongae
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.2 no.3
    • /
    • pp.15-22
    • /
    • 2014
  • Backround : The paradigm of recent education has been shifting from existing style of professor-oriented, passive and rote teaching to learner-centered education. Rather than mere delivery of knowledge, today's idea of education uses various audiovisual media to let learners gain more problem-solving skills, judgment, cognitive thinking ability, and creativity to apply to real practice. Also, while current trends and change in policy ask for related industry to require practice-centered teaching learning model, Problem-Based Learning (PBL) is quite effective that it activates problem-solving skills as well as application of National Competency Standards (NCS). Purpose : The purpose of this study was to suggest a teaching learning model article as an approach to apply web-based PBL for patient & medical charge management practices. Discussion & Conclusion : This paper the cases on PBL and presents the teaching learning model on web-based PBL as an approach to applying web-based PBL, which fits Medical Information System Department that combines health-medical treatment and computer applications, to practical health administrative affairs.