• Title/Summary/Keyword: probiotic potential

Search Result 263, Processing Time 0.026 seconds

Probiotic Potential of Indigenous Bacillus sp. BCNU 9028 Isolated from Meju (메주로부터 분리한 토착 Bacillus sp. BCNU 9028의 프로바이오틱스로서 이용 가능성)

  • Shin, Hwa-Jin;Bang, Ji-Hun;Choi, Hye-Jung;Kim, Dong-Wan;Ahn, Cheol-Soo;Jeong, Young-Kee;Joo, Woo-Hong
    • Journal of Life Science
    • /
    • v.22 no.5
    • /
    • pp.605-612
    • /
    • 2012
  • Spore-forming bacteria are being used as probiotic supplements for human and animal use, due to their low pH stability and ability to survive the gastric barrier. In this study, the BCNU 9028 strain was screened from meju, a Korean fermented soybean food starter. Biochemical and physiological characteristics, as well as 16S rDNA sequence analyses, indicate that this strain belongs to the genus $Bacillus$. $Bacillus$ sp. BCNU 9028 showed a 92% survivability at pH 2.5 and could also withstand 0.3% ox bile. Furthermore, it was postulated that $Bacillus$ sp. BCNU 9028 could prevent biofilm formation and adherence of food-borne pathogens such as $Listeria$ $monocytogenes$, $S.$ $aureus$ and $E.$ $coli$ on the basis of its autoaggregation and coaggregation capacity with food-borne pathogens. It was shown that BCNU 9028 has good abilities to adhere to the intestinal tract from its hydrophobic character (63.3%). The $Bacillus$ sp. BCNU 9028 strain especially elicited antibacterial activity against both Gram-positive and -negative pathogens. These findings suggested that the $Bacillus$ sp. BCNU 9028 strain could be used as a potential probiotic.

Isolation and Characterization of Plant-Derived Lactic Acid Bacteria as Potential Probiotic (잠재적 생균제로서 식물 젖산균의 분리 및 특성)

  • Kim, Jeong-Do;Park, Sung-Bo;Lee, Na-Ri;Jeong, Jin-Ha;Lee, Hee-Seob;Hwang, Dae-Youn;Lee, Jong-Sup;Jeong, Seong-Yun;Son, Hong-Joo
    • Microbiology and Biotechnology Letters
    • /
    • v.39 no.3
    • /
    • pp.308-312
    • /
    • 2011
  • Plant lactic acid bacteria were isolated from plant-associated fermentative foods and crops, and their probiotic properties were investigated. Isolates K27 and O2 were isolated from Kimchi and onion, and identified as Lactobacillus plantarum on the basis of 16S rRNA gene analysis. The two strains were highly resistant to acid (an MRS broth at pH 2.5), where the survival rates of L. plantarum K27 and L. plantarum O2 were 90.2% and 97.3%, respectively. L. plantarum K27 and L. plantarum O2 also showed high bile resistance to 0.5% oxgall, with a more than 70% survival rate. They showed an inhibitory effect against pathogenic strains of Escherichia coli KCCM 40880 and Pseudomonas aeruginosa ATCC 10145. The antibacterial effect of the two strains was probably due to the presence of lactic acid. ACE inhibitory activities of the two strains ranged from 72.8% to 80.6% in MRS broth. Notably, the two strains showed high ACE inhibitory activity (89.2~98.2%) in MRS broth containing 10% skim milk. Antioxidant activity was tested by DPPH radical scavenging activity, with antioxidant activities of the strains being in the range of 56.8~61.5%. The results obtained in this study suggest that L. plantarum K27 and L. plantarum O2 may be potential probiotic starter cultures with applications with fermentative products.

Effect of green tea supplementation on probiotic potential, physico-chemical, and functional properties of yogurt (요구르트의 프로바이오틱 활성과 물리화학적 및 기능적 특성에 대한 녹차 추출물의 영향)

  • Lim, Eun-Seo
    • Korean Journal of Microbiology
    • /
    • v.53 no.2
    • /
    • pp.103-117
    • /
    • 2017
  • The aim of this study was to evaluate the effect of green tea extract on probiotic potential, physico-chemical and functional properties of yogurt fermented with Lactobacillus acidophilus D11 or Lactobacillus fermentum D37 strains isolated from Doenjang. Probiotic activities such as the resistance to artificial digestive juices and the ability to adhere to epithelial cells were slightly higher in yogurt supplemented with green tea extract than in plain yogurt, which may be attributed to the increase in the number of lactic acid bacteria (LAB) by green tea extract supplementation. Furthermore, the microbiological and physico-chemical properties such as the number of LAB, organic acid production and viscosity were significantly (P<0.05) increased in yogurt added green tea extract compared to plain yogurt fermented with L. acidophilus D11. However, the green tea extract did not significantly (P>0.05) affect these properties of yogurt fermented with L. fermentum D37 strain. Meanwhile, the antibacterial activities against Escherichia coli O157 ATCC 43889, Salmonella enteritidis ATCC 13076, and Salmonella typhimurium KCTC 2514 and antioxidant activities including total phenol content, radical scavenging ability, and ferric-reducing antioxidant power were significantly higher in plain yogurt fermented with L. fermentum D37 than with L. acidophilus D11. The antibacterial and antioxidant activities of the yogurt were significantly (P<0.05) increased in proportion to the concentration of green tea extract added to plain yogurt. Consequently, green tea yogurt fermented with L. acidophilus D11 or L. fermentum D37 was considered to be a useful functional food that can inhibit the growth of pathogenic bacteria and scavenge the free radicals from the body cells.

Potential use of Bacillus amyloliquefaciens as a probiotic bacterium in abalone culture (북방전복, Haliotis discus hannai 에 대한 Bacillus amyloliquefaciens의 probiotic 효과)

  • Park, Jin Yeong;Kim, Wi-Sik;Kim, Heung Yun;Kim, Eunheui
    • Journal of fish pathology
    • /
    • v.29 no.1
    • /
    • pp.35-43
    • /
    • 2016
  • In comparison to the numbers of such studies of fish, few studies have been carried out on the immunity, physiology and ecology of abalone, while studies on abalone disease are also extremely rare. Moreover, mass mortality of cultured abalone due to pathogenic bacteria has not been reported in the southern coast of Korea. However, Vibrio-like bacteria have been isolated from dead abalone, which indicates that a review is required in order to determine the cause of abalone mortality. Use of an antimicrobial agent to minimize the damage caused by disease in abalone farms is common, but the therapeutic effects are insignificant. Demand for probiotics has increased, but research on the development of probiotics for use in abalone culture is very rare. Therefore, the present study isolated KC16-2 from fermented kimchi soup and investigated the characteristics of the isolate as a candidate probiotic bacterium in abalone. KC16-2 was identified as Bacillus amyloliquefaciens (B. amyloliquefaciens KC16-2) based on its biochemical properties and 16S rRNA gene sequence. B. amyloliquefaciens KC16-2 showed inhibitory effects against the growth of various vibrios in vitro, and kept the numbers constant until four days after inoculation in marine water at a temperature of $15{\sim}25^{\circ}C$, indicating the possible use of KC16-2 as a probiotic, except in the winter. The growth of KC16-2 was inhibited by bile salt, but the numbers increased over time suggesting the bacteria were still alive in the abalone's digestive tract. Abalone fed with a diet including KC16-2 for 12 weeks showed good growth, but showed no significant differences from the control group. However, the mortality of the abalone supplied the probiotic diet was reduced to half that of the control group in a challenge test with Vibrio tubiashii. Therefore, we suggest that B. amyloliquefaciens KC16-2 could be used as a probiotic bacterium for control of the mortality of abalone caused by opportunistic pathogenic vibrios.

Assessment of probiotic potential of Lactobacillus reuteri MD5-2 isolated from ceca of Muscovy ducks

  • Kamollerd, Chuchat;Surachon, Preeyaporn;Maunglai, Punchompoo;Siripornadulsil, Wilailak;Sukon, Peerapol
    • Korean Journal of Veterinary Research
    • /
    • v.56 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • Lactic acid bacteria (LAB) are commonly used as probiotics in poultry. The present study employed in vitro and in vivo methods to select and test LAB isolated from Muscovy duck ceca as potential probiotics. In the in vitro study, 50 LAB were isolated from Muscovy duck ceca and tested for growth inhibition against Salmonella (S.) Enteritidis. Eleven isolates strongly inhibited S. Enteritidis and only 1 isolate (MD5-2) showing the strongest inhibition was selected for identification. This isolate was called as Lactobacillus (L.) reuteri MD5-2. For the in vivo investigation, 90 1-day-old Muscovy ducks were randomly assigned into three groups of 30 animals each (group 1, control; group 2, treated with $10^8$ colony-forming unit (CFU) of L. reuteri MD5-2 orally once on day 1; and group 3, treated with $10^8CFU$ of L. reuteri MD5-2 orally once daily from days 1 to 5). The ducks were housed in three large cages and raised for 50 days, after which body weight, duodenal villus height and crypt depth were measured. Both villus height and villus height to crypt depth ratio were significantly greater in group 3 than in groups 1 and 2. In conclusion, further investigation of L. reuteri MD5-2 as a potential probiotic strain is warranted.

Bifidobacterium bifidum DS0908 and Bifidobacterium longum DS0950 Culture-Supernatants Ameliorate Obesity-Related Characteristics in Mice with High-Fat Diet-Induced Obesity

  • M. Shamim Rahman;Youri Lee;Doo-Sang Park;Yong-Sik Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.1
    • /
    • pp.96-105
    • /
    • 2023
  • Probiotic supplements have promising therapeutic effects on chronic diseases. In this study, we demonstrated the anti-obesity effects of two potential probiotics, Bifidobacterium bifidum DS0908 (DS0908) and Bifidobacterium longum DS0950 (DS0950). Treatment with DS0908 and DS0950 postbiotics significantly induced the expression of the brown adipocyte-specific markers UCP1, PPARγ, PGC1α, PRDM16 and beige adipocyte-specific markers CD137, FGF21, P2RX5, and COX2 in C3H10T1/2 mesenchymal stem cells (MSCs). In mice with high-fat diet (HFD)-induced obesity, both potential probiotics and postbiotics noticeably reduced body weight and epididymal fat accumulation without affecting food intake. DS0908 and DS0950 also improved insulin sensitivity and glucose use in mice with HFD-induced obesity. In addition, DS0908 and DS0950 improved the plasma lipid profile, proved by reduced triglyceride, low-density lipoprotein, and cholesterol levels. Furthermore, DS0908 and DS0950 improved mitochondrial respiratory function, confirmed by the high expression of oxidative phosphorylation proteins, during thermogenesis induction in the visceral and epididymal fat in mice with HFD-induced obesity. Notably, the physiological and metabolic changes were more significant after treatment with potential probiotic culture-supernatants than those with the bacterial pellet. Finally, gene knockdown and co-treatment with inhibitor-mediated mechanistic analyses showed that both DS0908 and DS0950 exerted anti-obesity-related effects via the PKA/p38 MAPK signaling activation in C3H10T1/2 MSCs. Our observations suggest that DS0908 and DS0950 could potentially alleviate obesity as dietary supplements.

In Vitro Evaluation of Swine-Derived Lactobacillus reuteri: Probiotic Properties and Effects on Intestinal Porcine Epithelial Cells Challenged with Enterotoxigenic Escherichia coli K88

  • Wan, Zhilin;Wang, Li;Chen, Zhuang;Ma, Xianyong;Yang, Xuefen;Zhang, Jian;Jiang, Zongyong
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.6
    • /
    • pp.1018-1025
    • /
    • 2016
  • Probiotics are considered as the best effective alternatives to antibiotics. The aim of this study was to characterize the probiotic potential of lactobacilli for use in swine farming by using in vitro evaluation methods. A total of 106 lactic acid bacterial isolates, originating from porcine feces, were first screened for the capacity to survive stresses considered important for putative probiotic strains. Sixteen isolates showed notable acid and bile resistance, antibacterial activity, and adherence to intestinal porcine epithelial cells (IPEC-1). One isolate, LR1, identified as Lactobacillus reuteri, was selected for extensive study of its probiotic and functional properties in IPEC-1 cell models. L. reuteri LR1 exhibited good adhesion to IPEC-1 cells and could inhibit the adhesion of enterotoxigenic Escherichia coli (ETEC) to IPEC-1 cells. L. reuteri LR1 could also modulate transcript and protein expression of cytokines involved in inflammation in IPEC-1 cells; the Lactobacillus strain inhibited the ETEC-induced expression of proinflammatory transcripts (IL-6 and TNF-α) and protein (IL-6), and increased the level of anti-inflammatory cytokine (IL-10). Measurement of the permeation of FD-4 showed that L. reuteri LR1 could maintain barrier integrity in monolayer IPEC-1 cells exposed to ETEC. Immunolocalization experiments showed L. reuteri LR1 could also prevent ETEC-induced tight junction ZO-1 disruption. Together, these results indicate that L. reuteri LR1 exhibits desirable probiotic properties and could be a potential probiotic for use in swine production.

Potential Probiotic Lactobacillus plantarum P1201 to Produce Soy-yogurt with Enhanced Antioxidant Activity (잠재적인 생균제제 Lactobacillus plantarum P1201을 이용한 항산화 활성이 증진된 두유-요구르트 제조)

  • Hwang, Chung Eun;An, Min Ju;Lee, Hee Yul;Lee, Byong Won;Kim, Hyun Tae;Ko, Jong Min;Baek, In Youl;Seo, Weon Taek;Cho, Kye Man
    • Korean Journal of Food Science and Technology
    • /
    • v.46 no.5
    • /
    • pp.556-565
    • /
    • 2014
  • In this study, we evaluated changes in physicochemical properties, total phenol and isoflavone contents, and antioxidant activity during soymilk fermentation by a potential probiotic Lactobacillus plantarum P1201. The P1201 strain showed survival rates of 58.14% and 62.22% after 4 h exposure to acid and artificial gastric acid conditions (pH 2.5), respectively. The optimal conditions for soy-yogurt fermentation by L. plantarum were determined to be as follows: temperature of $35^{\circ}C$, seed volume of 5.0%, and sucrose content of 10.0%. The total phenol and isoflavone contents and antioxidant activity were higher in soy-powder milk (SPM) yogurt than soymilk yogurt. In particular, the highest levels of isoflavone-aglycones, such as daidzein, glycitein, and genistein (91.50, 12.34, and $61.39{\mu}g/g$, respectively), were observed after 48 h of SPM fermentation. Thus, these results suggest that the soy-yogurt extract could be used as a potential source of natural antioxidants in food.

Genome analysis of Bacteroides sp. CACC 737 isolated from feline for its potential application

  • Kim, Jung-Ae;Jung, Min Young;Kim, Dae-Hyuk;Kim, Yangseon
    • Journal of Animal Science and Technology
    • /
    • v.62 no.6
    • /
    • pp.952-955
    • /
    • 2020
  • Bacteroides sp. CACC 737 was isolated from a feline, and its potential probiotic properties were characterized using functional genome analysis. Whole-genome sequencing was performed using the PacBio RSII and Illumina HiSeq platforms. The complete genome of strain CACC 737 contained 4.6 Mb, with a guanine (G) + cytosine (C) content of 45.8%, six cryptic plasmids, and extracellular polysaccharide gene as unique features. The strain was beneficial to animal health when consumed as feed, for example, for ameliorating immunological dysfunctions and metabolic disorders. The genome information adds to the comprehensive understanding of Bacteroides sp. and suggests potential animal-related industrial applications for this strain.

Probiotic Characterization of Acid- and Bile-tolerant Lactobacillus salivarius subsp. salivarius from Korean Faeces

  • Bae, H.C.;Nam, M.S.;Lee, J.Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.12
    • /
    • pp.1798-1807
    • /
    • 2002
  • This study was conducted to investigate lactobacillus salivarius subsp. salivarius having probiotic properties to be used as the health adjuncts with fermented milk products. Acid- and bile-tolerant lactobacillus salivarius subsp. salivarius was isolated with lactobacilli MRS broth from faeces of 80 healthy persons (infants, children and adults). It was used as a probiotic strain in fermented milk products. The pH of fermented milk decreased from pH 6.7 to 5.0 and titratable acidity increased from 0.3% to 1.0% by L. salivarius subsp. salivarius (isolation strain 20, 35, and 37), when incubated for 36 h at 37$^{\circ}C$. The number of viable cell counts of fermented milk was maximized at this incubation condition. The SDS-PAGE evidenced no significant change of casein but distinct changes of whey protein were observed by isolated L. salivarius subsp. salivarius for titratable acidity being incubated by 0.9-1.0% at 37$^{\circ}C$. All of the strains produced 83.43 to 131.96 mM of lactic acid and 5.39 to 26.85 mM of isobutyric acid in fermented products. The in vitro culture experiment was performed to evaluate ability to reduce cholesterol levels and antimicrobial activity in the growth medium. The selected L. salivarius subsp. salivarius reduced 23-38% of cholesterol content in lactobacilli MRS broth during bacterial growth for 24 h at 37$^{\circ}C$. All of the isolated L. salivarius subsp. salivarius had an excellent antibacterial activity with 15-25 mm of inhibition zone to E. coli KCTC1039, S. enteritidis KCCM3313, S. typhimurium M-15, and S. typhimurium KCCM40253 when its pH had not been adjusted. Also, all of the isolated L. salivarius subsp. salivarius had partial inhibition zone to E. coli KCTC1039, E. coli KCTC0115 and S. enteritidis KCCM3313 when it had been adjusted to pH 5.7. The selected strains were determined to have resistances of twelve antibiotic. Strains 27 and 35 among the L. salivarius subsp. salivarius showed the highest resistance to the antibiotics. These results indicated that some of the L. salivarius subsp. salivarius (strain 27 and 35) are considered as effective probiotic strains with a potential for industrial applications, but the further study is needed to establish their use as probiotics in vivo.