Browse > Article
http://dx.doi.org/10.5713/ajas.2002.1798

Probiotic Characterization of Acid- and Bile-tolerant Lactobacillus salivarius subsp. salivarius from Korean Faeces  

Bae, H.C. (Division of Animal Science and Resources, Chungnam National University)
Nam, M.S. (Division of Animal Science and Resources, Chungnam National University)
Lee, J.Y. (Department of Food Development and Marketing, Joongbu University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.15, no.12, 2002 , pp. 1798-1807 More about this Journal
Abstract
This study was conducted to investigate lactobacillus salivarius subsp. salivarius having probiotic properties to be used as the health adjuncts with fermented milk products. Acid- and bile-tolerant lactobacillus salivarius subsp. salivarius was isolated with lactobacilli MRS broth from faeces of 80 healthy persons (infants, children and adults). It was used as a probiotic strain in fermented milk products. The pH of fermented milk decreased from pH 6.7 to 5.0 and titratable acidity increased from 0.3% to 1.0% by L. salivarius subsp. salivarius (isolation strain 20, 35, and 37), when incubated for 36 h at 37$^{\circ}C$. The number of viable cell counts of fermented milk was maximized at this incubation condition. The SDS-PAGE evidenced no significant change of casein but distinct changes of whey protein were observed by isolated L. salivarius subsp. salivarius for titratable acidity being incubated by 0.9-1.0% at 37$^{\circ}C$. All of the strains produced 83.43 to 131.96 mM of lactic acid and 5.39 to 26.85 mM of isobutyric acid in fermented products. The in vitro culture experiment was performed to evaluate ability to reduce cholesterol levels and antimicrobial activity in the growth medium. The selected L. salivarius subsp. salivarius reduced 23-38% of cholesterol content in lactobacilli MRS broth during bacterial growth for 24 h at 37$^{\circ}C$. All of the isolated L. salivarius subsp. salivarius had an excellent antibacterial activity with 15-25 mm of inhibition zone to E. coli KCTC1039, S. enteritidis KCCM3313, S. typhimurium M-15, and S. typhimurium KCCM40253 when its pH had not been adjusted. Also, all of the isolated L. salivarius subsp. salivarius had partial inhibition zone to E. coli KCTC1039, E. coli KCTC0115 and S. enteritidis KCCM3313 when it had been adjusted to pH 5.7. The selected strains were determined to have resistances of twelve antibiotic. Strains 27 and 35 among the L. salivarius subsp. salivarius showed the highest resistance to the antibiotics. These results indicated that some of the L. salivarius subsp. salivarius (strain 27 and 35) are considered as effective probiotic strains with a potential for industrial applications, but the further study is needed to establish their use as probiotics in vivo.
Keywords
Probiotic; Lactobacillus; Fermented Milk;
Citations & Related Records

Times Cited By Web Of Science : 4  (Related Records In Web of Science)
Times Cited By SCOPUS : 6
연도 인용수 순위
1 Alm, L. 1982b. Effect of fermentation on proteins of Swedish fermented milk products. J. Dairy Sci. 65:1696-1704.   DOI
2 Daly, C., W. E. Sandine and P. R. Elliker. 1972. Interaction of food starter cultures and food-borne pathogens: Streptococcus diacetilactis versus food pathogens. J. Milk Food Technol. 35:349-357.   DOI
3 Dave, R. I. and N. P. Shah. 1998. Ingredient supplementation effects on viability of probiotic bacteria in yohurt. J. Dairy Sci. 81:2804-2816.   DOI   PUBMED   ScienceOn
4 Dubey, U. K. and V. V. Mistry. 1996. Growth characteristics of bifidobacteria in infant formulas. J. Dairy Sci. 79:1146-1155.   DOI   PUBMED   ScienceOn
5 Gilliland, S. E. 1987. Benefits of dietary lactobacilli in controlling levels of serum cholesterol, The 5th international symposium on lactic acid bacteria and human health, pp. 199-209.
6 Goodenough, E. R. and D. H. Kleyn. 1976. Influence of viable yogury microflora on digestion of lactose by the rat. J. Dairy Sci. 59:601-606.   DOI   ScienceOn
7 Kilara, A. and K. M. Shahani. 1976. Lactase activity of cultured and acidified dairy products. J. Dairy Sci. 61:2031-2035.
8 Klaver, F. A. M. and R. van der Meer. 1993. The assumed assimilation of cholesterol by Lactobacillus and Bifidobacterium bifidum is due to their bile salt-deconjugation activity. Appl. Environ. Microbiol. 59:1120-1124.   PUBMED
9 Nagao, F., M. Nakayama, T. Muto and K. Okumura. 2000. Effects of a fermented milk drink containing Lactobacillus casei strain Shirota on the immune system in healthy human subjects. Bioscience Biotechnology and Biochemistry. 64(12):2706-2708.   DOI   ScienceOn
10 Noh, D. O., S. H. Kim and S. E. Gilliland. 1997. Incorporation of cholesterol into cellular membrane of Lactobacillus acidophilus ATCC 43121. J. Dairy Sci. 80:3107-3113.   DOI   PUBMED   ScienceOn
11 Tagg, J. R. and A. R. McGiven. 1971. Assay systems for bacteriocins. App. Microbiol. 21:943-945.   PUBMED
12 Blanc, B. 1984. In 'Fermented Milks', Int. Dairy Fed., Doc. 179.
13 Kwag, J. H., J. C. Lee, T. H. Kim, P. K. Chung and K. K. Lee. 1989. Isolation and characteriaztion of a butyric acid bacterium from infant feces, Kor. J. Appl. Microbiol. Bioeng. 17:56-62.   과학기술학회마을
14 Baird-Parker, A. C. 1980. Organic acids. In: Microbial ecology of foods, vol. 1. Intern. Comm. on Microbiol. Spec. Foods. Academic Press, New York. 126-159.
15 Eyssen, H. 1973. Role of the gut microflora in metabolism of lipids and sterols. Proc. Nutr. Soc. 32:59-64.   DOI   PUBMED   ScienceOn
16 Gilliland, S. E. 1990. Health and nutritional benefits from lactic acid bacteria. FEMS Microbiol. Rev. 87:175-188.   DOI
17 Kato, I., K. Endo and T. Yokokura. 1994. Effects of oral administration of Lactobacillus casei on antitumor responses induced by tumor resection in mice. Int. J. Immunopharmacol. 16:29-34.   DOI   ScienceOn
18 Lisa, M., D. Colum, K. Barry, S. Fergus, C. O. Gerald and J. K. Collins. 1999. In vivo assessment of potential probiotic Lactobacillus salivarius strains: evaluation of their establishment, persistence, and localization in the murine gastrointestinal tract. Microbial ecology in health and disease. Scandinavian Uni. Press. pp. 149-157.
19 Bernardeau, M., J. P. Vernoux and M Gueguen. 2001. Probiotic properties of two Lactobacillus strains in vitro. Milchwissenschaft. 56(12):663-667.
20 Perdigon, G., M. E. N. Demacias, S. Alverez, G. Oliver and A. A. D. Ruiz. 1990. Prevention of gastrointestinal infection using immounobiological methods with milk fermented with milk fermented with Lactobacillus casei and Lactobacillus acidophilus. J. Dairy Res. 57:255-259.   DOI   PUBMED   ScienceOn
21 Jeon, I. J., S. J. Galitzer and K. J. Hennessy. 1984. Rapid determination of lactose and its hydrolyzates in whey and whey permeate by high performance liquid chromatography. J. Dairy Sci. 67:884-887.   DOI
22 Virginia, S. O., A. P. Aida and M. E. Nader-Macias. 1999. Characterization of a bacteriocin-like substance produced by a vaginal Lacobacillus salivarius strain. Appl. Environ. Microbiol. 65:5631-5635.
23 Chadwick, R. W., S. E. George and L. R. Claxton. 1992. Role of gastrointestinal mucosa and microflora in the bioactivation of dietary and environmental mutagens or carcinogens. Drug Metab. Res. 24:425-492.   DOI   PUBMED
24 Gupta, P. K., R. S. Chauhan, G. K. Singh and D. K. Agrawal. 2001. Lactobacillus acidophilus as a potential probiotic. Advances in immunology and immunopathology. In: Proceedings of a national symposium on immunomodulation in health and disease. Society for Immunology & Immunopathology, Pantnagar, Indiapp. pp. 66-69.
25 Suskovic, J., B. Kos, S. Matosic and V. Besendorfer. 2000. The effect of bile salts on survival and morphology of a potential probiotic strain Lactobacillus acidophilus M92. World Journal of Microbiology and Biotechnology. 16(7):673-678.   DOI
26 Daeschel, M. A. 1989. Antimicrobial substances from lactic acid bacteria for use as food preservatives. Food Technol. 43:164-168.
27 Flynn, S., D. V. Sinderen, G. M. Thornton, H. Holo, I. F. Nes, J. K. Collins and D. V. Sinderen. 2002. Characterization of the genetic locus responsible for the production of ABP-118, a novel bacteriocin produced by the probiotic bacterium Lactobacillus salivarius subsp. salivarius UCC118. Microbiology Reading. 148(4):973-984.
28 Speck, M. L. and K. R. Ltz. 1980. ACDPI status paper: nutritive and health values of cultured dairy foods. Cultured Dairy Products J. 15:10-12.
29 Juan, F. M. and S. Linda. 1989. Milk protein typing of bovine mammary gland tissue used to generate a complementary deoxyribonucleic acid library. J. Dairy Sci. 72:3190-3196.   DOI   ScienceOn
30 Puhan, Z. 1985. The Role of Fermented Milks in Nutrition. The 4th International Seminar on Lactic Acid Bacteria and Human Health. pp. 160-173.
31 Gill, H. S. and K. J. Rutherfurd. 2001. Immune enhancement conferred by oral delivery of Lactobacillus rhamnosus HN001 in different milk-based substrates. Journal of Dairy Research. 68(4):611-616.   DOI   PUBMED   ScienceOn
32 Usman and A. Hosono. 2000. Cholesterol-lowering activity of Lactobacillus gasseri: in vitro and in vivo results. Recent Research Developments in Agricultural and Biological Chemistry. 4:1-34.
33 Chassy, B. M. 1986. Gene transfer and advances in the molecular genetics of latobacilli. The 6th international symposium on lactic acid bacteria and human health. pp. 245-273.
34 Pubin, H. E. and F. Vaughan. 1979. Elucidation of the inhibitory factors of yogurt. J. Dairy Sci. 1873-1879.
35 Singh, B. and T. K. Bhat. 2001. Exploiting gastrointestinal microbes for livestock and industrial development. - Review -. Asian-Aust. J. Anim. Sci. 14:567-586.   DOI
36 Kim, H. S. and S. E. Gillilacd. 1983. Lactobacillus acidophilus as a dietary adujunct for milk to aid lactose digestion in humans. J. Dairy Sci. 66:959-964.   DOI   ScienceOn
37 Mukai, T., T. Asasaka, E. Sato, K. Mori, M. Matsumoto and H. Ohori. 2002. Inhibition of binding of Helicobacter pylori to the glycolipid receptors by probiotic Lactobacillus reuteri. FEMS Immunology and Medical Microbiology. 32(2):105-110.   DOI
38 Matar, C., J. C. Valdez, M. Medina, M. Rachid and G. Perdigon. 2001. Immunomodulating effects of milks fermented by Lactobacillus helveticus and its non-proteolytic variant. Journal of Dairy Research. 68(4):601-609.   DOI   PUBMED   ScienceOn
39 Barth, C. A. and M. D. Vrese. 1984. D-lactate in the metabolism of man-foreign substance or physiological metabolite, Kieler Milchw. Forsch. Ber. 36:155-161.
40 Bouzar, F., J. Cerning and M. Desmazeaud. 1997. Exopolysaccharide production and Texture-promoting abilities of mixed-strain starter cultures in yogurt production. J. Dairy Sci. 80:2310-2317.   DOI   ScienceOn
41 Gilliland, S. E., C. Nelson, and C. Maxwell. 1985. Assimilation of cholesterol by Lactobacillus acidophilus. Appl. Environ. Microbiol. 49:377-381.   PUBMED
42 Alm, L. 1982a. Effect of fermentation on lactose, glucose, and galactose content in milk and suitability of fermentd milk products for lactose intolerant individuals. J. Dairy Sci. 65:346-352.   DOI   PUBMED   ScienceOn
43 Horie, M., A. Ishiyama, Y. Fujihira-Ueki, J. Sillanpaa, T. K. Korhonen and T. Toba. 2002. Inhibition of the adherence of Escherichia coli strains to basement membrane by Lactobacillus crispatus expressing an S-layer. Journal of Applied Microbiology. 92(3):396-403.   DOI   PUBMED   ScienceOn
44 Broussalian, J. and D. Westhoff. 1983. Influence of lactose concentration of milk and yogurt on growth rate of rats. J. Dairy Sci. 66:438-443.   DOI   PUBMED   ScienceOn
45 Chang, Y. H., J. K. Kim, H. J. Kim, W. Y. Kim, Y. B. Kim, Y. H. Park, Y. H. Chang, J. K. Kim, H. J. Kim. W. Y. Kim. Y. B. Kim and Y. H. Park. 2001. Selection of a potential probiotic Lactobacillus strain and subsequent in vivo studies. Antonie van Leeuwenhoek. 80(2):193-199.   DOI   PUBMED   ScienceOn
46 Bae, H. C., S. H. Choi and M. S. Nam. 2001. Isolation and Identification of Acid- and Bile-Tolerant Lactobacillus salivarius subsp. salivarius from Human Faeces. Asian-Aust. J. Anim. Sci. 14(8):1170-1178.   DOI