• Title/Summary/Keyword: probiotic bacteria

검색결과 427건 처리시간 0.024초

Bifidobacteria의 Caco-2 Cell 정착성에 미치는 영향 인자 (Factors Affecting the Adherence of Bifidobacteria to Caco-2 Cell)

  • 김응률;정후길;전석락;유제현
    • 한국축산식품학회지
    • /
    • 제21권2호
    • /
    • pp.133-141
    • /
    • 2001
  • Adherence of probiotic bacteria to intestinal epithelium is found to be the most principal characteristics among the various physiological functionality. This study was conducted to investigate the effect of bifidobacterial growth properties and condition on the Caco-2 cell adherence and to construct a basic data on adherence-related research. Among 20 strains of bifidobacteris tested, when measured by cell surface hydrophobicity(CSH) and cell agglutination(CA), Bifidobacterium bifidum ATCC29521, Bif. adolescentis K8, and Bif. infantis K9 were selected. Using these strains, variations of Caso-2 cell adherence depending upon experimental condition were analyzed. The results obtained are as follows : Even though Bif. bifidum ATCC29521, Bif. adolescentis K8, and Bif. infantis K9 reached more 85% cell surface hydrophobicity there was no significant difference in cell agglutination, when reached 31.54$\pm$0.54mg/ml. By direct count method for adherence, viable cell count of M3, K1, K2, K8, K9 and K10 reached more 100 counts per 100 Caco-2 cells. When Bif. bifidum ATCC29521, Bif. adolescentistis K8, and Bif. infantis K9 were used to compare the adherence depending upon viable cell counts, reaction time, and growth phase, the more viable cell count, and the more adhered cell counts, the less adherence percentage. In addition, there was no difference in adherence percentage of bifidobacteria when bifidobacteria was incubated from 1 to 8 hrs after Caco-2 cells already formed monolayer. Considering of the effect of growth phase of bifidobacteria on adherence variation, all strains showed the highest adherence during the early stage of stationary phase. In conclusion, adherence of bifidobacteria was affected by strain specificity, viable cell count, and growth activity.

  • PDF

Immuno-Modulatory Effects of Bacteriocin-Producing Pediococcus pentosaceus JWS 939 in Mice

  • Choi, Hyun-Jong;Kim, Ji-Ye;Shin, Myeong-Su;Lee, Sang-Myeong;Lee, Wan-Kyu
    • 한국축산식품학회지
    • /
    • 제31권5호
    • /
    • pp.719-726
    • /
    • 2011
  • Pediococcus pentosaceus JWS 939 (JWS 939) is a nonpathogenic bacteriocin-producing probiotic isolated from the duck intestine. This study assessed the immunomodulatory effects of JWS 939 and compared them with those of Lactobacillus rhamnosus GG (LGG), a well-known immune enhancer. The immune-enhancing effects of JWS 939 were measured by measuring the production of nitric oxide (NO) and cytokines in C57BL/6 mouse peritoneal macrophages. In addition, to assess the immune enhancement abilities of JWS 939, in vivo, a Listeria monocytogenes challenge mice model was used. The results showed that heat-killed JWS 939 induced more NO and interleukin (IL)-$1{\beta}$ production in mouse peritoneal macrophages than in LGG, and that oral administration of viable JWS 939 in mice increased more NO, IL-$1{\beta}$, and tumor necrosis factor (TNF)-${\alpha}$ level than in LGG in serum upon L. monocytogenes challenge. In addition, mice fed with JWS 939 had a longer survival time after lethal challenge with L. monocytogenes, and these effects were stronger than those induced by LGG. Collectively, P. pentosaceus JWS 939 is a remarkable strain that, by releasing bacteriocin and enhancing host immune responses, may have potential as a duck feed additive to suppress pathogens.

장내 상피세포 점막 투과성에 대한 유산균 및 금은화의 효과 (In Vitro Profiling of Bacterial Influence and Herbal Applications of Lonicerae Flos on the Permeability of Intestinal Epithelial Cells)

  • 이신지;이명종;정지은;김호준
    • 한국식품영양과학회지
    • /
    • 제41권7호
    • /
    • pp.881-887
    • /
    • 2012
  • 유산균과 금은화, 발효 금은화는 장누수 증후군과 연관된 장 상피세포 점막 투과성 감소에 대하여 유의한 효과를 나타내었다. 따라서 유산균을 단독으로 사용하는 방법과 유산균을 이용해 발효시킨 금은화를 증가된 장 투과성 및 장내미생물 불균형으로 인한 장누수 증후군과 관련된 일련의 증상들을 치료하고 면역관련 질환 및 만성 염증성 질환에도 응용할 수 있을 것으로 예상되며 이에 대한 앞으로의 추가 연구가 필요할 것으로 사료된다.

Evaluation of Antioxidative Effects of Lactobacillus plantarum with Fuzzy Synthetic Models

  • Zhao, Jichun;Tian, Fengwei;Yan, Shuang;Zhai, Qixiao;Zhang, Hao;Chen, Wei
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권7호
    • /
    • pp.1052-1060
    • /
    • 2018
  • Numerous studies suggest that the effects of lactic acid bacteria (LAB) on oxidative stress in vivo are correlated with their antioxidative activities in vitro; however, the relationship is still unclear and contradictory. The antioxidative activities of 27 Lactobacillus plantarum strains isolated from fermented foods were determined in terms of 2,2-diphenyl-1-picrylhydrazyl, hydroxyl radical, and superoxide radical scavenging abilities, reducing activity, resistance to hydrogen peroxide, and ferrous chelating ability in vitro. Two fuzzy synthetic evaluation models, one with an analytic hierarchy process and one using entropy weight, were then used to evaluate the overall antioxidative abilities of these L. plantarum strains. Although there was some difference between the two models, the highest scoring strain (CCFM10), the middle scoring strain (CCFM242), and the lowest scoring strain (RS15-3) were obtained with both models. Examination of the antioxidative abilities of these three strains in $\text\tiny{D}$-galactose-induced oxidative stress mice demonstrated that their overall antioxidative abilities in vitro could reveal the abilities to alleviate oxidative stress in vivo. The current study suggests that assessment of overall antioxidative abilities with fuzzy synthetic models can guide the evaluation of probiotic antioxidants. It might be a more quick and effective method to evaluate the overall antioxidative abilities of LAB.

Platform Technology for Food-Grade Expression System Using the genus Bifidobacterium

  • Park, Myeong-Soo;Kang, Yoon-Hee;Cho, Sang-Hee;Seo, Jeong-Min;Ji, Geun-Eog
    • 한국미생물생명공학회:학술대회논문집
    • /
    • 한국미생물생명공학회 2001년도 Proceedings of 2001 International Symposium
    • /
    • pp.155-157
    • /
    • 2001
  • Bifidobacterium spp. is nonpathogenic, gram-positive and anaerobic bacteria, which inhabit the intestinal tract of humans and animals. In breast-fed infants, bifidobacteria comprise morethan 90% of the gut bacterial population. Bifidobacteria spp. are used in commericial fermented dairy products and have been suggested to exert health promoting effects on the host by maintaining intestinal microflora balances, improving lactose tolerance, reducing serum cholesterol levels, increasing synthesis of vitamins, and aiding the immune enchancement and anticarcinogenic activity for the host. These beneficial effects of Bifidobacterium are strain-related. Therefore continued efforts to improve strain characteristics are warranted. in these respect, development of vector system for Bifidobacterium is very important not only for the strain improvement but also because Bifidobacterium is most promising in serving as a delivery system for the useful gene products, such as vaccine or anticarcinogenic polypeptides, into human intestinal tract. For developing vector system, we have characterized several bifidobacterial plasmids at genetic level and developed several shuttle vectors between E. coli and Bifidobacterium using them. Also, we have cloned and sequenced several metabolic genes and food grade selection marker. Also we have obtained bifidobacterial surface protein, which will be used as the mediator for surface display of foreign genes. Recently we have succeeded in expressing amylase and GFP in Bifidobacterium using our own expression vector system. Now we are in a very exciting stage for the molecular breeding and safe delivery system using probiotic Bifidobacterium strains.

  • PDF

Effect of Different Commercial Oligosaccharides on the Fermentation Properties in Kefir during Fermentation

  • Oh, Nam Su;Lee, Hyun Ah;Myung, Jae Hee;Lee, Ji Young;Joung, Jae Yeon;Shin, Yong Kook;Baick, Seung Chun
    • 한국축산식품학회지
    • /
    • 제33권3호
    • /
    • pp.325-330
    • /
    • 2013
  • Kefir is traditional fermented milk produced by various lactic acid bacteria (LAB) and yeast, which produce lactic acid, ethanol, carbon dioxide, and other flavor compounds. The purpose of this study was to evaluate the effects of different commercial oligosaccharides, such as maltotriose, fructooligosaccharide (FOS), galactooligosaccharide (GOS), and isomaltooligosaccharide (IMO), on the fermentation properties of kefir. First, we determined the acidification kinetic parameters, such as $V_{max}$, $t_{max}$(h), $t_{pH5.0}$(h), and $t_f$(h) of fermented milk supplemented with 4% (w/w) of different oligosaccharides. The probiotic survival and chemical composition (pH, organic acids profile, and ethanol content) of kefir during fermentation were also measured. Compared to control fermentation, all oligosaccharides increased acidification rate and reduced the time to complete fermentation (pH 4.7). The addition of FOS, in particular, resulted in the lowest $t_f$(h) and the highest populations of LAB and yeast during fermentation. All oligosaccharides increased ethanol production during fermentation. Further, significant differences were observed in the formation rates of six organic acids during fermentation. This study provided comparative data on the properties of commercial oligosaccharides for kefir manufacturing. Consequently, FOS especially had the potential for adequate and effective oligosaccharides in commercial kefir for the improvement of cost- and time-effectiveness.

Systematic Review on Application of Whey Towards Production of Galacto-oligosaccharide Using β-Galactosidase Enzyme from Pichia pastoris

  • Ramachandran, C;Oh, Deog-Hwan
    • 한국식품위생안전성학회지
    • /
    • 제35권4호
    • /
    • pp.304-311
    • /
    • 2020
  • Galacto-oligosaccharides(GOS)는 프로바이오틱스 미생물의 성장을 증진시켜 인류 건강에 유익한 작용을 갖게 하는 프리바이오틱스이며 식품 산업에서 다양한 활용성을 갖는다. GOS는 보통 β-galactosidase에 의해 촉매 반응이 일어난 lactose로부터 생성된다. 한편, 세포 표면 발현은 살아있는 세포 표면의 펩타이드와 단백질을 세포의 기능성 성분에 융합시켜 발현시키는 것이다. 표층 발현 세포는 다양한 잠재적 이용가치를 갖는다. N 말단 부근에 위치하는 것으로 생각되는 Flo1p 응집 functional domain은 세포의 flocs로의 가역적인 응집을 유발하면서 α-mannan carbohydrates와 같은 세포벽 성분과 비공유결합을 한다. 한외여과한 유청을 농축, 분무건조한 유청막투과액(Whey Permeate, WP)을 이용하여 β-galactosidase 재조합 Pichia pastoris (P. pastoris) 로 표층 발현 처리 (surface engineering)하는 GOS의 합성법은 폐기물을 활용하는 새로운 효율적인 방법이라 할 수 있다.

생균제 개발을 위한 유산균의 선별 및 동결건조 보호제의 효과 (Screening of Lactic Acid Bacteria for the Development of Probiotics and the Effect of Cryoprotectant Agents)

  • 임유범;백남수;김영만
    • 한국식품영양학회지
    • /
    • 제14권5호
    • /
    • pp.441-445
    • /
    • 2001
  • Probiotics를 개발하기 위하여 저온성 및 내염성의 특성을 갖는 균주를 김치로부터 분리하였다. 분리한 3종의 균주를 동정한 결과 MGl9는 Lactobacillus brevis, MG89는 Enterococcus faecium, MG208은 Lactobacillus plantarum으로 확인되었다. 분리된 3종의 균주에 대한 동결건조 보호제 시험을 한 결과 MGl9는 10% skim milk + l% soluble starch에서 71.4%로 생존율이 가장 높았고 lactose와 mellezitose 에서도 60% 이상의 생존율을 나타냈다. MG89는 solbitol에서 76.2%로 생존율이 가장 높았고 sucrose, xylitol, mannitol 등에서도 66% 이상의 생존율을 나타내었다. MG208은 fructose에서 64.7%의 생존율을 보였다 인공위액에서의 균 생존율을 시험한 결과 lactose, mellezitose, hlycogen, mannose, xylose 등에서70% 정도의 우수한 생존율을 보였다. 이러한 결과로부터 본시험에 사용된 동결건조 보호제 가운데 몇몇은 유산균의 종류에 따라 다르지만 동결건조제품의 제조나 사료첨가제로 제조시 산업적인 이용이 가능할 것으로 사료된다.

  • PDF

Evaluation of Fermented Sausages Manufactured with Reduced-fat and Functional Starter Cultures on Physicochemical, Functional and Flavor Characteristics

  • Kim, Young Joo;Park, Sung Yong;Lee, Hong Cheol;Yoo, Seung Seok;Oh, Se Jong;Kim, Hyeong Sang;Chin, Koo Bok
    • 한국축산식품학회지
    • /
    • 제34권3호
    • /
    • pp.346-354
    • /
    • 2014
  • Fermented foods with probiotics having functional properties may provide beneficial effects on health. These effects are varied, depending on the type of lactic acid bacteria (LAB). Different probiotic LAB might have different functional properties. Thus, this study was performed to evaluate the quality of fermented sausages manufactured with functional starter cultures (Lactobacillus plantarum 115 and 167, and Pediococcus damnosus L12) and different fat levels, and to determine the optimum condition for the manufacture of these products. Medium-fat (~15%) fermented sausages reduced the drying time and cholesterol contents, as compared to regular-fat counterparts. In proximate analysis, the contents of moisture and protein of regular-fat products were lower than medium-fat with reduced fat content. The regular-fat products also had a lighter color and less redness, due to reduced fat content. Approximately 35 volatile compounds were identified in functional fermented sausages, and hexanal, trans-caryophyllene, and tetradecanal were the major volatile compounds. Selected mixed starter culture showed the potential possibility of replacing the commercial starter culture (LK30 plus) in flavor profiles. However, medium-fat fermented sausage containing selected mixed starter culture tended to be less acceptable than their high-fat counterparts, due to excess dry ring developed in the surface. These results indicate that the use of combinations of L. plantarum 115 and 167, and P. damnosus L12 as a starter culture, will prove useful for manufacturing the fermented sausage.

Nutritional Functions of Milk and Dairy Products in Improving Human Health

  • Chon, Jung-Whan;Kim, Hyunsook;Kim, Dong-Hyeon;Lee, Soo-Kyung;Kim, Hong-Seok;Yim, Jin-Hyuk;Song, Kwang-Young;Kim, Young-Ji;Kang, Il-Byung;Jeong, Dana;Park, Jin-Hyeong;Jang, Ho-Seok;Seo, Kun-Ho
    • Journal of Dairy Science and Biotechnology
    • /
    • 제34권3호
    • /
    • pp.145-155
    • /
    • 2016
  • Cow's milk and dairy products are elements of the human diet that could play an important role in improving human health. The macronutrients and micronutrients found in milk could supply the nutrients required to maintain human health. Among them, milk-derived bioactive peptides have been identified as potential ingredients found in health promoting functional foods. These bioactive peptides target diet-related chronic diseases, particularly non-communicable ones such as cardiovascular disease, diabetes and obesity. Additionally probiotics such as lactic acid bacteria (LAB) are can be considered live microorganisms that confer health benefits for the host-, when administered in adequate amounts. Further, the calcium, vitamin D, and protein content of milk and dairy products could play a role in proving bone health. The effect of milk and calcium on bone mineral density could prevent against fracture, osteoporosis and rickets. Furthermore, milk and dairy products also contain which factors that, which protect against dental caries (anti-cariogenic properties). This paper reviews the various nutritional functions of milk and dairy products in improving human health.