• Title/Summary/Keyword: probe vehicle

Search Result 75, Processing Time 0.022 seconds

An Experimental Study on Internal Drag Correction of High Speed Vehicle Using Three Probes (세 가지 프로브를 이용한 초고속 비행체 내부 항력 보정 기법의 실험적 연구)

  • Jin, Hyeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.7
    • /
    • pp.529-537
    • /
    • 2021
  • Wind tunnel tests were carried out with a scramjet high speed vehicle. Since the scramjet engine does not have a compressor, it has a simple structure, but it is important to design the intake for the supersonic combustion in the combustion chamber. In this study, internal flow characteristics and the starting condition were analyzed by measuring the pressure at the isolator exit just before the combustion chamber, and the intake performance parameters were calculated and compared the result on every Mach number. The aerodynamic characteristics of the flow-through high speed vehicle were analyzed and internal drag correction is required to precisely analyze the aerodynamic characteristics. In this paper, an experimental technique using three probes for internal drag correction was proposed. By applying internal drag correction, it was able to figure out the effect of the internal flow on the aerodynamic force of the vehicle.

An Estimation Methodology of Empirical Flow-density Diagram Using Vision Sensor-based Probe Vehicles' Time Headway Data (개별 차량의 비전 센서 기반 차두 시간 데이터를 활용한 경험적 교통류 모형 추정 방법론)

  • Kim, Dong Min;Shim, Jisup
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.2
    • /
    • pp.17-32
    • /
    • 2022
  • This study explored an approach to estimate a flow-density diagram(FD) on a link in highway traffic environment by utilizing probe vehicles' time headway records. To study empirical flow-density diagram(EFD), the probe vehicles with vision sensors were recruited for collecting driving records for nine months and the vision sensor data pre-processing and GIS-based map matching were implemented. Then, we examined the new EFDs to evaluate validity with reference diagrams which is derived from loop detection traffic data. The probability distributions of time headway and distance headway as well as standard deviation of flow and density were utilized in examination. As a result, it turned out that the main factors for estimation errors are the limited number of probe vehicles and bias of flow status. We finally suggest a method to improve the accuracy of EFD model.

Spatiotemporal Traffic Density Estimation Based on Low Frequency ADAS Probe Data on Freeway (표본 ADAS 차두거리 기반 연속류 시공간적 교통밀도 추정)

  • Lim, Donghyun;Ko, Eunjeong;Seo, Younghoon;Kim, Hyungjoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.6
    • /
    • pp.208-221
    • /
    • 2020
  • The objective of this study is to estimate and analyze the traffic density of continuous flow using the trajectory of individual vehicles and the headway of sample probe vehicles-front vehicles obtained from ADAS (Advanced Driver Assitance System) installed in sample probe vehicles. In the past, traffic density of continuous traffic flow was mainly estimated by processing data such as traffic volume, speed, and share collected from Vehicle Detection System, or by counting the number of vehicles directly using video information such as CCTV. This method showed the limitation of spatial limitations in estimating traffic density, and low reliability of estimation in the event of traffic congestion. To overcome the limitations of prior research, In this study, individual vehicle trajectory data and vehicle headway information collected from ADAS are used to detect the space on the road and to estimate the spatiotemporal traffic density using the Generalized Density formula. As a result, an analysis of the accuracy of the traffic density estimates according to the sampling rate of ADAS vehicles showed that the expected sampling rate of 30% was approximately 90% consistent with the actual traffic density. This study contribute to efficient traffic operation management by estimating reliable traffic density in road situations where ADAS and autonomous vehicles are mixed.

Integration and Decision Algorithm for Location-Based Road Hazardous Data Collected by Probe Vehicles (프로브 수집 위치기반 도로위험정보 통합 및 판단 알고리즘)

  • Chae, Chandle;Sim, HyeonJeong;Lee, Jonghoon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.6
    • /
    • pp.173-184
    • /
    • 2018
  • As the portable traffic information collection system using probe vehicles spreads, it is becoming possible to collect road hazard information such as portholes, falling objects, and road surface freezing using in-vehicle sensors in addition to existing traffic information. In this study, we developed a integration and decision algorithm that integrates time and space in real time when multiple probe vehicles detect events such as road hazard information based on GPS coordinates. The core function of the algorithm is to determine whether the road hazard information generated at a specific point is the same point from the result of detecting multiple GPS probes with different GPS coordinates, Generating the data, (3) continuously determining whether the generated event data is valid, and (4) ending the event when the road hazard situation ends. For this purpose, the road risk information collected by the probe vehicle was processed in real time to achieve the conditional probability, and the validity of the event was verified by continuously updating the road risk information collected by the probe vehicle. It is considered that the developed hybrid processing algorithm can be applied to probe-based traffic information collection and event information processing such as C-ITS and autonomous driving car in the future.

Improving Diesel Car Smoke Measurement Probe Performance of Diesel Cars Using Hole Position (홀 위치에 따른 디젤자동차 매연 측정프로브 성능 개선 연구)

  • Chae, Il-Seok;Kim, Eun-Ji;Kim, Jae-Yeol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.1
    • /
    • pp.29-35
    • /
    • 2020
  • Car inspection systems are regularly carried out by the state to ensure the safety and emission status of cars, thereby improving the safety and quality of life by reducing fine dust and greenhouse gases that are the main culprits of vehicle defects and air pollution. These automobile inspections are largely divided into either regular or comprehensive inspections. This study analyzed the smoke measuring probes used in the lug - down 3 mode. In the previously issued paper "Improvement of Soot Probe Efficiency for Automotive Emission Measurement," an improved smoke measurement probe(B) improved on the problems that arise from the current smoke measurement probe (A). In this study, a technique that can improve the probe's inhalation efficiency over the improved (B) probes was applied to probes (C). Probe (C) involves a structure designed close to the center of the circumference of the exhaust pipe, and the suction efficiency was improved by adding a variable center unit.

An experimental study on the wake structure behind a van type vehicle (Van형 자동차의 후류구조에 대한 실험적 해석(와류 형성을 중심으로))

  • 성봉주;장병희
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.10 no.3
    • /
    • pp.51-59
    • /
    • 1988
  • The wake structure behind a van type vehicle was studied experimentally with a 5-hole yawhead probe. Through an effective calibration method of the 5-hole yawhead probe, the flow properties such as velocity vector, total pressure and static pressure were obtained on two cross sections within the wake. These results combined with the surface flow visualization performed in the previous study, yielded some information about the wake structure. When the model was placed in a stream with zero yaw angle, two counter rotating vortices were observed behind the model which pull down the surface flow on each side of the model. With increasing the yaw angle, the surface flow on the windward side changed to divide the flow in two directions, one flows upward on the upper part and the other flows downward on the lower part of the windward side. Hence a new weak vortex was created on the upper windward side, which resulted 3 vortices within the wake. The size and the strength of the vortices increased with yaw angle.

  • PDF

Development of a GPS/GIS based Real-time Congestion Index for Traffic Information (교통정보제공을 위한 GPS/GIS기반의 실시간 혼잡지표개발)

  • Choi, Kee-Choo;Jang, Jeong-Ah;Jeong, Jae-Young;Shim, Sang-Woo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.12 no.4 s.31
    • /
    • pp.53-60
    • /
    • 2004
  • Congestion index is needed for quantifying congestion level for various areas. So far, the index has been calculated based on multiple vehicle data for specified time interval. Such being the case, it was costly to build it and the usage of it was focused on policy development and evaluation rather than on traffic information provision. This study focuses on a development on a single vehicle based congestion index which can be a representative value for link congestion level and link speed information at the same time for dual purposes of traditional usages and information provision. A new term has been added for representing real time based arterial congestion level and it has been verified on a real time basis. The index was based on single vehicle GPS data and seemed to be cost effective in deriving the index. With the help of the index, the traffic information contents can be diversified in a constructive way in providing real time traffic information for ITS area and in using congestion level determination for traditional transportation areas.

  • PDF

A Novel Method for Estimating Representative Section Travel Times Using Individual Vehicle Trajectory Data (개별차량 주행정보를 이용한 차로별 구간대표통행시간 산출기법)

  • Rim, Hee-Sub;Oh, Cheol;Kang, Kyeong-Pyo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.6
    • /
    • pp.23-35
    • /
    • 2009
  • This study proposes a methodology for estimating representative section travel times using individual vehicle travel information under the ubiquitous transportation environment (UTE). A novel approach is to substantialize a concept of dynamic node-links in processing trajectory data. Also, grouping vehicles was conducted to obtain more reliable travel times representing characteristics of individual vehicle travels. Since the UTE allows us to obtain higher accuracy of vehicle positions, travel times for each lane can be estimated based on the proposed methodology. Evaluation results show that less than 10% of mean absolute percentage error was achievable with 20% of probe vehicle rate. It is expected that outcome of this study is useful for providing more accurate and reliable traffic information services.

  • PDF

Analysis of Driving and Environmental Impacts by Providing Warning Information in C-ITS Vehicles Using PVD (PVD를 활용한 C-ITS 차량 내 경고정보 제공에 따른 주행 및 환경영향 분석)

  • Yoonmi Kim;Ho Seon Kim;Kyeong-Pyo Kang;Seoung Bum Kim
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.5
    • /
    • pp.224-239
    • /
    • 2023
  • C-ITS (Cooperative-Intelligent Transportation System) refers to user safety-oriented technology and systems that provide forward traffic situation information based on a two-way wireless communication technology between vehicles or between vehicles and infrastructure. Since the Daejeon-Sejong pilot project in 2016, the C-ITS infrastructure has been installed at various locations to provide C-ITS safety services through highway and local government demonstration projects. In this study, a methodology was developed to verify the effectiveness of the warning information using individual vehicle data collected through the Gwangju Metropolitan City C-ITS demonstration project. The analysis of the effectiveness was largely divided into driving behavior impact analysis and environmental analysis. Compliance analysis and driving safety evaluation were performed for the driving impact analysis. In addition, to supplement the inadequate collection of Probe Vehicle Data (PVD) collected during the C-ITS demonstration project, Digital Tacho Graph ( DTG ) data was additionally collected and used for effect analysis. The results of the compliance analysis showed that drivers displayed reduced driving behavior in response to warning information based on a sufficient number of valid samples. Also, the results of calculating and analyzing driving safety indicators, such as jerk and acceleration noise, revealed that driving safety was improved due to the provision of warning information.