• Title/Summary/Keyword: probe image

Search Result 211, Processing Time 0.023 seconds

Confocal Scanning Microscopy with Multiple Optical Probes for High Speed 3D Measurements and Color Imaging (고속 3차원 측정 및 칼라 이미징을 위한 다중 광탐침 공초점 주사 현미경)

  • Chun, Wan-Hee;Lee, Seung-Woo;Ahn, Jin-Woo;Gweon, Dae-Gab
    • Journal of the Semiconductor & Display Technology
    • /
    • v.7 no.1
    • /
    • pp.11-16
    • /
    • 2008
  • Confocal scanning microscopy is a widely used technique for three dimensional measurements because it is characterized by high resolution, high SNR and depth discrimination. Generally an image is generated by moving one optical probe that satisfies the confocal condition on the specimen. Measurement speed is limited by movement speed of the optical probe; scanning speed. To improve measurement speed we increase the number of optical probes. Specimen region to scan is divided by optical probes. Multi-point information each optical probe points to can be obtained simultaneously. Therefore image acquisition speed is increased in proportion to the number of optical probes. And multiple optical probes from red, green and blue laser sources can be used for color imaging and image quality, i.e., contrast, is improved by adding color information by this way. To conclude, this technique contributes to the improvement of measurement speed and image quality.

  • PDF

Simple image artifact removal technique for more accurate iris diagnosis

  • Kim, Jeong-lae;Kim, Soon Bae;Jung, Hae Ri;Lee, Woo-cheol;Jeong, Hyun-Woo
    • International journal of advanced smart convergence
    • /
    • v.7 no.4
    • /
    • pp.169-173
    • /
    • 2018
  • Iris diagnosis based on the color and texture information is one of a novel approach which can represent the current state of a certain organ inside body or the health condition of a person. In analysis of the iris images, there are critical image artifacts which can prevent of use interpretation of the iris textures on images. Here, we developed the iris diagnosis system based on a hand-held typed imaging probe which consists of a single camera sensor module with 8M pixels, two pairs of 400~700 nm LED, and a guide beam. Two original images with different light noise pattern were successively acquired in turns, and the light noise-free image was finally reconstructed and demonstrated by the proposed artifact removal approach.

Influence to the Doppler Images by the Defects of SAE in the Probe of Medical Ultrasonic Scanners (초음파 프로브에서 인접 단위 소자군(SAE) 결함이 도플러 영상에 미치는 영향)

  • Lee, Kyung-Sung
    • Journal of radiological science and technology
    • /
    • v.38 no.1
    • /
    • pp.7-15
    • /
    • 2015
  • A ultrasonic probe is very important in medical ultrasonic image, but the frequency of probe defects are often. Therefore practical tools for probe based ultrasonic QA should be developed. Advanced research on the effects of the probe defects on the quality of ultrasonic images is required. This study has investigated the effects of the defects in the probe elements influence Doppler images in the medical ultrasonic scanners. Especially the defects in a set of adjacent elements(SAE) electrically disconnected influence Doppler images were tested. The results show Doppler brightness and velocity became rapidly reduced as the defected elements is located centrally, as the defected elements is activated. The more the defected elements increased, the more Doppler brightness and velocity increased. As a set of the element disconnected moved, it appeared Doppler velocity starting to decrease and then was followed by brightness. The strength is not consistent with the velocity in the number and location of the defected elements. The defects in the probe elements influence Doppler velocity when the defected elements got out of the elements activated at Doppler mode.

Construction of Static 3D Ultrasonography Image by Radiation Beam Tracking Method from 1D Array Probe (1차원 배열 탐촉자의 방사빔추적기법을 이용한 정적 3차원 초음파진단영상 구성)

  • Kim, Yong Tae;Doh, Il;Ahn, Bongyoung;Kim, Kwang-Youn
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.2
    • /
    • pp.128-133
    • /
    • 2015
  • This paper describes the construction of a static 3D ultrasonography image by tracking the radiation beam position during the handy operation of a 1D array probe to enable point-of-care use. The theoretical model of the transformation from the translational and rotational information of the sensor mounted on the probe to the reference Cartesian coordinate system was given. The signal amplification and serial communication interface module was made using a commercially available sensor. A test phantom was also made using silicone putty in a donut shape. During the movement of the hand-held probe, B-mode movie and sensor signals were recorded. B-mode images were periodically selected from the movie, and the gray levels of the pixels for each image were converted to the gray levels of 3D voxels. 3D and 2D images of arbitrary cross-section of the B-mode type were also constructed from the voxel data, and agreed well with the shape of the test phantom.

Optical and Mechanical Characteristics of NF System and NF Gap Control (근접장 광학계의 광학적 및 기계적 특성 분석과 근접장 간격제어)

  • Oh, Hyeong-Ryeol;Lee, Jun-Hee;Gweon, Dae-Gab;Kim, Soo-Kyung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1528-1532
    • /
    • 2000
  • The conventional optics and near field optics are compared numerically in the view points of the spot size and propagation characteristics. The decaying characteristics of near field light require the optics to access the object within several tens of nanometers. Therefore the gap control is one of the main issues in the near field optics area. In this paper the gap control is done by using the shear force of the NF(Near Field) probe and the characteristics are examined. The probe is modeled as a 2'nd order mass-spring-damper system driven by a harmonic force. The primary cause of the decrease in vibration amplitude is due to the damping force - shear force - between the surface and the probe. Using the model, damping constant and resonance frequency of the probe is calculated as a function of probe-sample distance. Detecting the amplitude and phase shift of the NF probe attached to the high Q-factor piezoelectric tuning fork, we can control the position of the NF probe about 0 to 50nm above the sample. The feedback signal to regulate the probe-sample distance can be used independently for surface topography imaging. 3-D view of the shear force image of a testing sample with the period of $1{\mu}m$ will be shown.

  • PDF

A Study of Testing Method for Diagnostic Ultrasonic Array Probe through Pattern Analysis of Acoustic-Fields with Probe Channel Division (채널별 음장분포 분석을 통한 진단용 초음파 어레이 프로브의 평가방법에 관한 연구)

  • Yoo, B.C.;Choi, H.H.;Noh, S.C.;Min, H.K.;Kwon, J.W.
    • Journal of Biomedical Engineering Research
    • /
    • v.27 no.5
    • /
    • pp.229-236
    • /
    • 2006
  • The acoustic field analysis method is the superior calibration method for rectifying the ultrasonic probe sensitivity. This method also can be applied to evaluate the probe performance in clinical fields without numerical analysis and precise measurements. In this paper, we propose the method of acoustic field pattern analysis with probe channel division for the evaluation of diagnostic ultrasound probe characterization. In order to verify our purpose, we performed a set of experiments. We measured the acoustic-field pattern of the three inferiority probes by channel division to evaluate an acoustic field distribution and impulse response characteristics. By comparing the results of acoustic field measurement method with that of conventional method such as impulse response and live image test for linear array probes, it is demonstrated that the ultrasound field measurement method is more effective then conventional method in detection of defective elements.

Spatial Compounding of Ultrasonic Diagnostic Images for Rotating Linear Probe with Geometric Parameter Error Compensation

  • Choi, Myoung Hwan;Bae, Moo Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.4
    • /
    • pp.1418-1425
    • /
    • 2014
  • In ultrasonic medical imaging, spatial compounding of images is a technique where ultrasonic beam is steered to examine patient tissues in multiple angles. In the conventional ultrasonic diagnostic imaging, the steering of the ultrasonic beam is achieved electronically using the phased array transducer elements. In this paper, a spatial compounding approach is presented where the ultrasonic probe element is rotated mechanically and the beam steering is achieved mechanically. In the spatial compounding, target position is computed using the value of the rotation axis and the transducer array angular position. However, in the process of the rotation mechanism construction and the control system there arises the inevitable uncertainties in these values. These geometric parameter errors result in the target position error, and the consequence is a blurry compounded image. In order to reduce these target position errors, we present a spatial compounding scheme where error correcting transformation matrices are computed and applied to the raw images before spatial compounding to reduce the blurriness in the compounded image. The proposed scheme is illustrated using phantom and live scan images of human knee, and it is shown that the blurriness is effectively reduced.

Spray Characterization of Gas-Centered Swirl Coaxial Injectors Using an Optical Probe

  • Marty, Sylvain;Hong, Moon-Geun;Matas, Jean-Philippe;Cartellier, Alain;Lee, Soo-Yong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.172-177
    • /
    • 2011
  • In order to investigate spray characteristics of gas-centered swirl coaxial injectors, a phase detection optical probe is employed to obtain the spatial evolution of the drop size and velocity. From the study on the optical probe responses under various impact angles, it is demonstrated that the drop size and velocity can be measured with an uncertainty less than 15% when the probe axis remains within about ${\pm}15^{\circ}$ of the drop velocity direction. This typical uncertainty is in good agreement with a previous study. It is also shown that the drop sizes measured by the optical probe are in accord with those evaluated by image processing techniques. Finally, the experiments with the optical probe are performed in dense sprays, as it were, in the near field of gas-centered swirl coaxial injectors. Some experimental results are presented and discussed to be of help to understanding of spray characteristics of the injectors.

  • PDF

Design and Fabrication of a 3-dimensional Diagnostic Ultrasonic Probe (3차원 입체 영상 진단용 초음파 프로브의 설계 및 제작)

  • Eun, Hong;Lee, Su-Sung;Roh, Yong-Rae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.8
    • /
    • pp.766-771
    • /
    • 2002
  • In this study, we have developed a 3-dimensional diagnostic ultrasonic sector probe using a convex type ultrasonic probe with 128 active elements. The probe was made to operate at the center frequency of 4.5㎒ with the bandwidth of 66%. The driving part was designed to rotate the axis of the convex probe by means of a step motor equipped with reduction gears and spur gears attached to the motor so that the probe could enable us to acquire a series of 2-dimensional images to construct a 3-dimensional image. Acoustic cover of the probe was made of polymers to have the same radius of rotation as that of the convex probe. The controllability of the rotation angle and the structural stability of the probe were confirmed through experimental 3-dimensional images obtained using the developed 3-dimensional sector probe.

Development of Correction Technologies for Quantification of Photon Measurement in Bio-Luminescence Image (생체발광영상에서 포톤 검출 정량화를 위한 보정기법의 개발)

  • Tak, Yoon-Oh;Kim, Hyeon-Sik;Park, Hyeong-Ju;Choi, Heung-Kook;Choi, Eun-Seo;Hann, S.-Wook;Lee, Byeong-Il
    • Journal of Biomedical Engineering Research
    • /
    • v.32 no.2
    • /
    • pp.85-92
    • /
    • 2011
  • Bioluminescence imaging (BLI) is the most sensitive animal imaging technique for molecular imaging research. Generally, highly sensitive CCD is used to detect an optical probe introduced in a living mouse. However, in many cases, the light signal emitted from a probe is too small to detect because it is scattered and attenuated by the tissue prior to being detected. The problem is that scattering and attenuation not only inhibit accurate measurement but also make image quality down. Thus we introduced a new method to reduce noise by using property of CCD and method to improve image quality of bioluminescence image by using two steps Gaussian blurring.