• Title/Summary/Keyword: probable rainfall

Search Result 118, Processing Time 0.027 seconds

Drainage Performance of Various Subsurface Drain Materials- (배수개선공법개발에 관한 연구(I) -각종 지하배수용 암거재료의 배수성능-)

  • 김철회;이근후;유시조;서원명
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.21 no.3
    • /
    • pp.104-120
    • /
    • 1979
  • I. Title of the Study Studies on the Development of Improved Subsurface Drainage Methods. -Drainage Performance of Various Subsurface Drain Materials- II. Object of the Study Studies were carried out to select the drain material having the highest performance of drainage; And to develop the water budget model which is necessary for the planning of the drainage project and the establishment of water management standards in the water-logged paddy field. III. Content and Scope of the Study 1. The experiment was carried out in the laboratory by using a sand tank model. The drainage performance of various drain materials was compared evaluated. 2. A water budget model was established. Various parameters necessary for the model were investigated by analyzing existing data and measured data from the experimental field. The adaptability of the model was evaluated by comparing the estimated values to the field data. IV. Results and Recommendations 1. A corrugated tube enveloped with gravel or mat showed the highest drainage performance among the eight materials submmitted for the experiment. 2. The drainage performance of the long cement tile(50 cm long) was higher than that of the short cement tile(25 cm long). 3. Rice bran was superior to gravel in its' drain performance. 4. No difference was shown between a grave envelope and a P.V.C. wool mat in their performance of drainage. Continues investigation is needed to clarify the envelope performance. 5. All the results described above were obtained from the laboratory tests. A field test is recommended to confirm the results obtained. 6. As a water balance model of a given soil profile, the soil moisture depletion D, could be represented as follows; $$D=\Sigma\limit_{t=1}^{n}(Et-R_{\ell}-I+W_d)..........(17)$$ 7. Among the various empirical formulae for potential evapotranspiration, Penman's formular was best fit to the data observed with the evaporation pans in Jinju area. High degree of positive correlation between Penman;s predicted data and observed data was confirmed. The regression equation was Y=1.4X-22.86, where Y represents evaporation rate from small pan, in mm/100 days, and X represents potential evapotranspiration rate estimated by Penman's formular. The coefficient of correlation was r=0.94.** 8. To estimate evapotranspiration in the field, the consumptive use coefficient, Kc, was introduced. Kc was defined by the function of the characteristics of the crop soil as follows; $Kc=Kco{\cdot}Ka+Ks..........(20)$ where, Kco, Ka ans Ks represents the crop coefficient, the soil moisture coefficient, and the correction coefficient, respectively. The value of Kco and Ka was obtained from the Fig.16 and the Fig.17, respectively. And, if $Kco{\cdot}Ka{\geq}1.0,$ then Ks=0, otherwise, Ks value was estimated by using the relation; $Ks=1-Kco{\cdot}Ka$. 9. Into type formular, $r_t=\frac{R_{24}}{24}(\frac{b}{\sqrt{t}+a})$, was the best fit one to estimate the probable rainfall intensity when daily rainfall and rainfall durations are given as input data, The coefficient a and b are shown on the Table 16. 10. Japanese type formular, $I_t=\frac{b}{\sqrt{t}+a}$, was the best fit one to estimate the probable rainfall intensity when the rainfall duration only was given. The coefficient a and b are shown on the Table 17. 11. Effective rainfall, Re, was estimated by using following relationships; Re=D, if $R-D\geq}0$, otherwise, Re=R. 12. The difference of rainfall amount from soil moisture depletion was considered as the amount of drainage required. In this case, when Wd=O, Equation 24 was used, otherwise two to three days of lag time was considered and correction was made by use of storage coefficient. 13. To evaluate the model, measured data and estimated data was compared, and relative error was computed. 5.5 percent The relative error was 5.5 percent. 14. By considering the water budget in Jinju area, it was shown that the evaporation amount was greater than the rainfall during period of October to March in next year. This was the behind reasonning that the improvement of surface drainage system is needed in Jinju area.

  • PDF

A Study on Inundation Analysis Considering Inland and River Flood (내수 및 외수영향을 고려한 침수해석에 관한 연구)

  • Cho, Wan-Hee;Han, Kun-Yeun;Kim, Hyeon-Sik;Kim, Jin-Soo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.1
    • /
    • pp.74-89
    • /
    • 2015
  • The objective of this study is to present countermeasures for mitigation of flood damage with inundation analysis considering the effect of inland and river flood and prediction of flood inundation area, depth and time against emergencies caused by abnormal flood and local torrential rainfall. In this study, 2-D inundation analysis was fulfilled on the basis of river flood analysis applying to HEC-HMS and FLDWAV model and inundation analysis applying to SWMM model for the area of Shineum-dong, Gimcheon-si. Also expected inundation depth and area about probable rainfall of 100 and 200 years frequency were suggested. If expected inundation depth and flooding area is presented on the basis of this inundation analysis considering the effect of inland and river flood, it would be an important preliminary data to establish structural and nonstructural countermeasures for flood prevention. Also if flood risk map is prepared based on the result of inundation analysis, it would be useful to evacuate residents in high-risk area and regulate road and vehicle.

Analyzing the Reduction of Runoff and Flood by Arrangements of Stormwater Storage Facilities (우수저류시설의 배치방법에 따른 유출 및 침수피해 저감효과 분석)

  • Park, Changyeol;Shin, Sang Young;Son, Eun Jung
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.1
    • /
    • pp.45-54
    • /
    • 2013
  • This study analyzes the reduction effects of runoff and flood damage through different arrangements of stormwater storage facilities. Three scenarios based on the spatial allocation of storage capacity are used: concentrated, decentralized and combinative. The characteristics of runoff and flood damage by scenario are compared. The XP-SWMM model is used for runoff simulation by the probable rainfall of return period. The result shows that the concentrated arrangement of storage facilities is most effective to reduce the amount of peak flow and to delay the time of peak flow. Yet, while the concentrated arrangement is most effective to reduce the inundation damage, it is not effective to reduce runoff volume. The decentralized arrangement is most effective to reduce runoff volume. The combinative arrangement is effective not only the runoff reduction but also the reduction of flood damage. The result indicates that the flood mitigation strategies against heavy rainfall need to consider decentralized on-site arrangement for the reduction of runoff volume along with concentrated off-site arrangement of storage facilities.

The variation of Probable Maximum Flood due to Rainfall distribution and Rainfall-Runoff Parameters (강우분포와 강우-유출 매개변수에 따른 가능최대홍수량의 변화)

  • Kim, Nam Won;Lee, Jeong Eun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.287-291
    • /
    • 2004
  • 가능최대홍수량(PMF)은 가능최대강수량(PMF)을 입력으로 한 강우-유출해석의 결과이다. 대상유역의 가능최대강수량을 산정하여 시${\cdot}$공간분포를 고려한 가능최대호우를 결정한 후, 강우-유출관계를 적용하여 가능최대홍수량을 산정하는 것이다. 이러한 과정을 통하여 산정된 가능최대홍수량은 실무에서 댐설계를 위해 이용되어 오고 있다. 하지만, 댐설계기준(건설교통부, 2001)에 가능최대홍수량 산정을 위한 방법론은 제시되어 있지만, 이에 내한 이론적인 토의가 충분치 않다. 본 연구에서는 국내의 가능최대홍수량 산정절차에 대한 문제점을 제시하고, 이에 대한 논의를 하고자 강우분포와 강우-유출매개변수에 따른 가능최대홍수량의 변화를 검토하였다. 먼저, 강우의 시간분포방법으로 blocking 방법, huff 방법, mononobe 공식을 채택하여 그 문제점을 세시하고, 시간분포방법별 가능최대홍수량의 변화를 비교${\cdot}$검토하였다. 강우-유출 매개변수에 따른 가능최대홍수량의 변화를 검토하기 위해서, 먼지 평균개념의 기존단위도와 최대개념의 단위도에 대해 평가하였으며, 두 단위도 적용에 따른 가능최대홍수량의 변화를 비교${\cdot}$검토하였다. 최대개념의 단위도는 강우-유출관계의 적용을 위해 그동안 우리나라에서 주로 이용되어 왔던 Clark 단위도를 선정하였고, 실측강우-유출자료의 해석을 통해 가능최대홍수량의 개념에 부합되는 매개변수를 산정하였다. 또한, 가능최대강수량의 차이, 강우손실방법, 기저유량 고려유무에 따른 가능최대홍수량의 변화를 검토하였다.

  • PDF

Two-dimensional Inundation Analysis Using Stochastic Rainfall Variation and Geographic Information System (추계학적 강우변동생성 기법과 GIS를 연계한 2차원 침수해석)

  • Lee, Jin-Young;Cho, Wan-Hee;Han, Kun-Yeun;Ahn, Ki-Hong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.13 no.1
    • /
    • pp.101-113
    • /
    • 2010
  • Recently actual rainfall pattern is decreasing rainy days and increasing in rainfall intensity and the frequency of flood occurrence is also increased. To consider recent situation, Engineers use deterministic methods like a PMP(Probable Maximum Precipitation). If design storm wouldn't occur, increasing of design criteria is extravagant. In addition, the biggest structure cause trouble with residents and environmental problem. And then it is necessary to study considering probability of rainfall parameter in each sub-basin for design of water structure. In this study, stochastic rainfall patterns are generated by using log-ratio method, Johnson system and multivariate Monte Carlo simulation. Using the stochastic rainfall patterns, hydrological analysis, hydraulic analysis and 2nd flooding analysis were performed based on GIS for their applicability. The results of simulations are similar to the actual damage area so the methodology of this study should be used about making a flood risk map or regidental shunting rout map against the region.

Development of flood inundation area GIS database for Samsung-1 drainage sector, Seoul, Korea (서울 삼성 1분구에 대한 침수면적 GIS 데이터베이스 구축)

  • Oh, Minkwan;Lee, Dongryul;Kwon, Hyunhan;Kim, Dongkyun
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.12
    • /
    • pp.981-993
    • /
    • 2016
  • This study explains the GIS database of flood inundation area developed for Samsung-1 Drainage Sector, Seoul, Korea. The XP-SWMM dual drainage model was developed for the study area, and the time series observed at the watershed outlet was used to obtain the watershed time of concentration and to calibrate the XP-SWMM model. The rainfall scenario was developed by dividing the 40 minute watershed time of concentration into two 20-minute time steps and then applying the gradually increasing 5 mm/hr interval rainfall intensity to each of the time step up to 200 mm/hr, which is the probable maximum precipitation of the study area. The developed rainfall scenarios was used as the input of the XP-SWMM model to obtain the database of the flood inundation area. The analysis on the developed GIS database revealed that: (1) For the same increment of the rainfall, the increase of the flooded area can be different, and this was caused by topographic characteristics and spatial formation of pipe network of the study area; (2) For the same flooded area, the spatial extent can be significantly different depending on the temporal distribution of rainfall; and (3) For the same amount of the design rainfall, the flood inundation area and the extent can be significantly different depending on the temporal distribution of rainfall.

Seasonal variation of physicochemical factor and fecal pollution in the Hansan-Geojeman area, Korea

  • Park, Young Cheol;Kim, Poong Ho;Jung, Yeoun Joong;Lee, Ka Jeong;Kim, Min Seon;Go, Kyeong Ri;Park, Sang Gi;Kwon, Soon Jae;Yang, Ji Hye;Mok, Jong Soo
    • Fisheries and Aquatic Sciences
    • /
    • v.19 no.4
    • /
    • pp.17.1-17.9
    • /
    • 2016
  • The seasonal variation of fecal coliforms (FCs) and physicochemical factors was determined in seawaters of the Hansan-Geojeman area, including a designated area for oyster, and in inland pollution sources of its drainage basin. The mean daily loads of FCs in inland pollution sources ranged from $1.2{\times}10^9$ to $3.1{\times}10^{11}$ most probable number (MPN)/day; however, the pollutants could not be reached at the designated area. FC concentrations of seawaters were closely related to season, rainfall, and inland contaminants, however, within the regulation limit of various countries for shellfish. The highest concentrations for chemical oxygen demand (COD) and $chlorophyll-{\alpha}$ in seawaters were shown in the surface layer during August with high rainfall, whereas the lowest for dissolved oxygen (DO) in the bottom layer of the same month. Therefore, it indicates that the concentrations of FC, COD, DO, and $chlorophyll-{\alpha}$ of seawaters were closely related to season and rainfall.

Runoff Characteristics Analysis using GCUH on Ungauged Small Basin (지형기후학적순간단위유량도를 이용한 미계측 소유역의 유출특성 분석)

  • Lee, Sang-Jin;Choi, Hyun;Lee, Bae-Sung;Jeong, Dong-Kug
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.14 no.2 s.36
    • /
    • pp.15-22
    • /
    • 2006
  • Runoff Characteristics has been Analysis Using geomorphologic Instantaneous Unit Hydrograph(GIUH) and geomorphoclimatic unit hydrograph(GCUH) on an ungaged vary small basin about $5km^2$ scale in Kyungbuk gampo area. First, we estimated hydrology Factor using Geographic Information System(GIS) tool and then, calculated the characteristic velocity using the real rainfall-runoff data. It is compared with several velocities derived from GCUH theory and several other concentration time formulae. Kerby and Braby-Williams seems to be more applicable as characteristic velocity formula. Second, We compared the GCUH peak discharge with the probable flood, also compared the unit hydrograph as like the Clark, the Nakayasu and the S.C.S and GCUH with the observed discharge using the real rainfall events. The comparison results showed that GCUH could be applicable on an ungaged vary small basin. We expected that the result can be used as for estimation of a flash flood standard rainfall as well as emergency management plan.

  • PDF

Climatic Influence on the Water Requirement of Wheat-Rice Cropping System in UCC Command Area of Pakistan (파키스탄 UCC 관개지역 밀·쌀 재배 필요수량에 대한 기후변화 영향)

  • Ahmad, Mirza Junaid;Choi, Kyung Sook
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.5
    • /
    • pp.69-80
    • /
    • 2018
  • This study investigated climate change influences over crop water requirement (CWR) and irrigation water requirement (IWR) of the wheat-rice cropping system of Upper Chenab Canal (UCC) command in Punjab Province, Pakistan. PRECIS simulated delta-change climate projections under the A1B scenario were used to project future climate during two-time slices: 2030s (2021-2050) and 2060s (2051-2080) against baseline climatology (1980-2010). CROPWAT model was used to simulate future CWRs and IWRs of the crops. Projections suggested that future climate of the study area would be much hotter than the baseline period with minor rainfall increments. The probable temperature rise increased CWRs and IWRs for both the crops. Wheat CWR was more sensitive to climate-induced temperature variations than rice. However, projected winter/wheat seasonal rainfall increments were satisfactorily higher to compensate for the elevated wheat CWRs; but predicted increments in summer/rice seasonal rainfalls were not enough to complement change rate of the rice CWRs. Thus, predicted wheat IWRs displayed a marginal and rice IWRs displayed a substantial rise. This suggested that future wheat production might withstand the climatic influences by end of the 2030s, but would not sustain the 2060s climatic conditions; whereas, the rice might not be able to bear the future climate-change impacts even by end of the 2030s. In conclusion, the temperature during the winter season and rainfall during the summer season were important climate variables controlling water requirements and crop production in the study area.

Projecting the climatic influences on the water requirements of wheat-rice cropping system in Pakistan (파키스탄 밀-옥수수 재배시스템의 기후변화를 반영한 필요수량 산정)

  • Ahmad, Mirza Junaid;Choi, Kyung-Sook
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.486-486
    • /
    • 2018
  • During the post green revolution era, wheat and rice were the main crops of concern to cater the food security issues of Pakistan. The use of semi dwarf high yielding varieties along with extensive use of fertilizers and surface and ground water lead to substantial increase in crop production. However, the higher crop productivity came at the cost of over exploitation of the precious land and water resources, which ultimately has resulted in the dwindling production rates, loss of soil fertility, and qualitative and quantitative deterioration of both surface and ground water bodies. Recently, during the past two decades, severe climate changes are further pushing the Pakistan's wheat-rice system towards its limits. This necessitates a careful analysis of the current crop water requirements and water footprints (both green and blue) to project the future trends under the most likely climate change phenomenon. This was done by using the FAO developed CROPWAT model v 8.0, coupled with the statistically-downscaled climate projections from the 8 Global Circulation Models (GCMs), for the two future time slices, 2030s (2021-2050) and 2060s (2051-2080), under the two Representative Concentration Pathways (RCPs): 4.5 and 8.5. The wheat-rice production system of Punjab, Pakistan was considered as a case study in exploration of how the changing climate might influence the crop water requirements and water footprints of the two major crops. Under the worst, most likely future scenario of temperature rise and rainfall reduction, the crop water requirements and water footprints, especially blue, increased, owing to the elevated irrigation demands originating from the accelerated evapotranspiration rates. A probable increase in rainfall as envisaged by some GCMs may partly alleviate the adverse impacts of the temperature rise but the higher uncertainties associated with the predicated rainfall patterns is worth considering before reaching a final conclusion. The total water footprints were continuously increasing implying that future climate would profoundly influence the crop evapotranspiration demands. The results highlighted the significance of the irrigation water availability in order to sustain and improve the wheat-rice production system of Punjab, Pakistan.

  • PDF