In conventional probability-based quality evaluation of products with qualitative characteristics, many factors that affect the evaluation are not easily represented quantitatively, because the relation between reliability of human evaluator and each of these factors is not clear. In order to evaluate the quality of product with qualitative characteristics quantitatively, in this paper, the relation is represented as the shape of possibility distribution function of fuzzy set on the interval [0,1]. Furthermore, fuzzy reasoning is used to obtain the estimates of quality characteristics. And, it is supposed that many quality characteristics affected by the above factors are connected with the final characteristic through hierarchical structures. Finally, using the estimates gained from the final evaluation, qualitative characteristics are evaluated by use of concept of pattern recognition.
International journal of advanced smart convergence
/
제12권1호
/
pp.199-207
/
2023
Trend Impact Analysis is a prominent hybrid method has been used in future studies with a modified surprise- free forecast. It considers experts' perceptions about how future events may change the surprise-free forecast. It is an advanced forecasting tool used in futures studies for identifying, understanding and analyzing the consequences of unprecedented events on future trends. In this paper, we propose an advanced mechanism to generate more justifiable estimates to the probability of occurrence of an unprecedented event as a function of time with different degrees of severity using adaptive neuro-fuzzy inference system (ANFIS). The key idea of the paper is to enhance the generic process of reasoning with fuzzy logic and neural network by adding the additional step of attributes simulation, as unprecedented events do not occur all of a sudden but rather their occurrence is affected by change in the values of a set of attributes. An ANFIS approach is used to identify the occurrence and severity of an event, depending on the values of its trigger attributes.
Fault diagnosis technique in machining system which is one of engineering techniques absolutely necessary to automation of manufacturing system has been proposed. As a whole, diagnosis process is explained by two steps: sensor data acquisition and reasoning current state of system with the given sensor data. Flexible disk grinding process implemented in milling machine was employed in order to obtain empirical manufacturing process information. Resistance force data during machining were acquired using tool dynamometer known as sensor which is comparably accurate and reliable in operation. Tool status during the process was analyzed using influnece diagram assigning probability from the statistical analysis procedure.
바둑이 진행될 때마다 적절한 후보 자리를 계산하는 모델이 있다면, 사례를 이용하지 않고도 후보 생성알고리즘의 표준으로 정립될 수 있다. 본 논문에서는 바둑을 조합 게임론에 따라서 분석하고, 흑, 백간 영역의 차이를 반면의 형세로 나타내는 확률 행렬(PM)을 기반으로 임의의 국면에 대한 후보를 생성하는 후보 본 논문에서 설계된 CGS는 임의의 국면에 돌이 놓여지면 영향력, 안정도, 살아남을 확률 값(PV), 확률행렬(PM)을 계산하고, 현 국면에 대한 적당한 후보를 생성한다. CGS의 기본 전략은 현재의 반면에 대해서 다섯 개의 후보를 생성하고 그 중에서 PV가 높은 지점을 최종 후보로 선정한다. CGS는 공격보다 방어에 주력하였으며 정석 사례를 사용하는 NEMESIS에 비해서 사례를 전혀 구축하지 않은 CGS가 초반에 있어서 다소 우세함을 보여준다.
학교 수학에서 발견적 형성적 측면을 강조할 수 있는 교수학적 도구로 스프레드 시트의 활용에 대한 실증적인 분석이 필요하다는 인식하에 본 연구는 확률 통계 영역에서 스프레드시트를 활용할 수 있는 구체적인 방안에 대해서 알아보고, 이에 따라 확률 통계 영역에서 스프레드시트를 활용한 교수 학습 자료를 실제로 개발하기 위한 목적으로 수행되었다. 문헌 연구를 통해 확률 통계 영역의 개념과 내용중에서 스프레드시트를 활용한 학습경로를 구성했으며, 교수 실험에서 드러난 문제점을 보완하여 8차시 분량의 스프레드시트를 활용한 교수 학습 자료를 개발하였다. 교수 실험에 참여한 학생들은 "정보사회와 컴퓨터"과목의 정규 단원에서 스프레드 시트의 다양한 기능을 익혔고, 스프레드시트의 셀 기능과 수학함수, 통계함수의 기능을 사용할 수 있었다. 교수 실험 과정에서 스프레드시트를 활용한 교수 학습 자료는 학생들이 확률 통계적 상황의 여러 측면을 직관적으로 탐구하는 것을 가능하게 하였으며, 확률 통계적 추론을 경험하고 수학적 사고를 구성하는 데 긍정적인 역할을 하였다. 이 결과는 교실 수업에서 스프레드시트를 활용한 교수 학습 자료가 확률 통계적 상황과 상호 작용하는 기회를 제공할 수 있음을 시사한다.
본 연구는 우리나라 초등학교 수학과 교육과정에서 가능성 지도가 우연(chance)과 무작위성(randomness)의 개념과 관련하여 어떻게 이루어지고 있는지 비판적으로 고찰하여 문제점을 분석하고자 한다. 이를 위해 먼저 우연과 무작위성 개념에 대해 살펴보고, 이를 바탕으로 우리나라 초등학교 수학에서 가능성 지도의 문제점을 제시하였다. 우리나라 초등학교 수학과 교육과정에서는 자료에 기반을 둔 추론의 경험이 결여되어 있었으며, 무작위성 지도가 적절히 이루어지지 않고 있었다. 또한 표본공간의 지도가 누락되면서 모순적인 소재가 활용되고 있었다. 마지막으로 가능성에 대한 지도가 특정 학년에 편중되어 지도되고 있음을 지적하였다. 확률 지도의 개선을 위해 크게 확률 실험의 지도와 표본공간의 지도를 제안하며, 또한 특정 학년에 편중된 구성을 위해 자료 영역의 내용을 조절할 것을 제안한다.
오늘의 글로벌 네트워크 비즈니스 환경에서 비서직 종사자들에게 신속 정확한 정보수집 능력과 올바른 판단력은 그 어느 때보다 필요한 역량으로 중시되고 있다. 비서직 업무 수행에 필요한 대부분의 지식은 체험지 혹은 경험지이기 때문에 비서가 주어진 문제를 해결하기 위해서 과거의 비슷한 사례를 참고하는 방법은 매우 타당한 것이며, 경험이나 선례를 적용함으로서 실패할 요인을 줄이고 문제 해결의 질을 높이는 동시에 시간을 단축시킬 수 있다. 본 연구에서는 비서 업무 수행 시 특정 문제 해결에 필요한 정보를 사례기반 추론에 근거하여 현재 문제와 가장 유사한 과거의 사례를 추천하는 시스템(COKRS : Case-based reasoning Office Knowledge Recommender System, 이하 COKRS)을 설계하고 프로토타입을 구축함을 목적으로 한다. 본 연구 결과인 COKRS는 비서직에서 뿐만 아니라 일반 사무영역에서의 지식관리 목적으로도 확대 이용 될 수 있을 것이다.
This study developed a prediction model using machine learning technology and predicted the success of health consulting by using life log data generated through u-Health service. The model index of the Random Forest model was the highest using. As a result of analyzing the Random Forest model, blood pressure was the most influential factor in the success or failure of metabolic syndrome in the subjects of u-Health service, followed by triglycerides, body weight, blood sugar, high cholesterol, and medication appear. muscular, basal metabolic rate and high-density lipoprotein cholesterol were increased; waist circumference, Blood sugar and triglyceride were decreased. Further, biometrics and health behavior improved. After nine months of u-health services, the number of subjects with four or more factors for metabolic syndrome decreased by 28.6%; 3.7% of regular drinkers stopped drinking; 23.2% of subjects who rarely exercised began to exercise twice a week or more; and 20.0% of smokers stopped smoking. If the predictive model developed in this study is linked with CBR, it can be used as case study data of CBR with high probability of success in the prediction model to improve the compliance of the subject and to improve the qualitative effect of counseling for the improvement of the metabolic syndrome.
This paper outlines a framework for performing intelligent sensor validation for a diagnostic expert system while reasoning under uncertainty. The emphasis is on the algorithmic preprocess technique. A companion paper focusses on heuristic post-processing. Sensor validation plays a vital role in the ability of the overall system to correctly detemine the state of a plant monitored by imperfect sensors. Especially, several theoretical developments were made in understanding uncertain sensory data in statistical aspect. Uncertain information in sensory values is represented through probability assignments on three discrete states, "high", "normal", and "low", and additional sensor confidence measures in Algorithmic Sv.Upper and lower warning limits are generated from the historical learning sets, which represents the borderlines for heat rate degradation generated in the Algorithmic SV initiates a historic data base for better reference in future use. All the information generated in the Algorithmic SV initiate a session to differentiate the sensor fault from the process fault and to make an inference on the system performance. This framework for a diagnostic expert system with sensor validation and reasonig under uncertainty applies in HEATXPRT$^{TM}$, a data-driven on-line expert system for diagnosing heat rate degradation problems in fossil power plants.
Bishop이 제안한 Generative Topographic Mapping(GTM)은 Kohonen이 제안한 자율 학습 신경망인 Self Organizing Maps(SOM)의 확률 버전이다. GTM은 데이터가 생성되는 확률 분포를 잠재 변수, 혹은 은닉 변수를 사용하여 모형화한다. 이것은 SOM에서는 구현될 수 없는 GTM만의 특징이며, 이러한 특징으로 인하여 SOM의 한계들을 극복할 수 있게 된다. 본 논문에서는 이러한 GTM 모형에 베이지안 학습(Bayesian learning)을 결합하여 작은 오분류율을 가지는 분류 알고리즘인 베이지안 GTM(Bayesian GTM)을 제안한다. 이 알고리즘은 기존의 GTM의 빠른 계산 처리 능력과 데이터에 대한 확률 분포, 그리고 베이지안 추론의 정확성을 이용하여 기존의 분류 알고리즘보다 우수한 결과를 얻게 된다. 본 논문에서는 기존의 분류 알고리즘에서 많이 실험하였다. 학습 데이터를 통하여 이를 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.