• Title/Summary/Keyword: probability of detection

Search Result 1,127, Processing Time 0.032 seconds

Finite Element Analysis of Ultrasonic Wave Propagation and Scattering (초음파 전파 및 산란 문제의 유한요소 해석)

  • Jeong, Hyun-Jo;Park, Moon-Cheol;Park, Yun-Won
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.4
    • /
    • pp.411-421
    • /
    • 2002
  • The accurate analysis of ultrasonic wave propagation and scattering plays an important role in many aspects of nondestructive evaluation. A numerical analysis makes it possible to perform parametric studies, and in this way the probability of detection and reliability of test results can be improved. In this study, a finite element method was developed for the analysis of ultrasonic fields, the accuracy of results was checked by solving several representative problems. The size of element and the integral time step, which are the critical components for the convergence of numerical results, were determined in a commercial finite element code. Several propagation and scattering problems in 2-D isotropic and anisotropic materials were solved and their results were compared with known analytical or experimental results.

Binary Forecast of Asian Dust Days over South Korea in the Winter Season (남한지역 겨울철 황사출현일수에 대한 범주 예측모형 개발)

  • Sohn, Keon-Tae;Lee, Hyo-Jin;Kim, Seung-Bum
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.3
    • /
    • pp.535-546
    • /
    • 2011
  • This study develops statistical models for the binary forecast of Asian dust days over South Korea in the winter season. For this study, we used three kinds of data; the rst one is the observed Asian dust days for a period of 31 years (1980 to 2010) as target values, the second one is four meteorological factors(near surface temperature, precipitation, snowfall, ground wind speed) in the source regions of Asian dust based on the NCEP reanalysis data and the third one is the large-scale climate indices. Four kinds of statistical models(multiple regression models, logistic regression models, decision trees, and support vector machines) are applied and compared based on skill scores(hit rate, probability of detection and false alarm rate).

Design of the PHY Structure of a Voice and Data Transceiver with Security (보안성을 갖는 음성 및 데이터 트랜시버의 물리 계층 구조 설계)

  • Eun, Chang-Soo;Lom, Sun-Min;Lee, Kyoung-Min
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.10 s.352
    • /
    • pp.46-54
    • /
    • 2006
  • In this paper, we propose a digital transceiver that can overcome the problems which current analog transceivers have. For the proposed transceiver, we assumed a frequency resource that consists of discrete and narrow channels. We also assumed that person-to-group, group-to-group, as well as person-to-person, voice and data communications with moderate security should be devisedand the data rate is 1 Mbps with simultaneous voice and data. Frequency hewing spread spectrum (FH-SS) and differential 8-PSK (D8PSK) were adopted for security reasons and bandwidth constraints, and for the reduction of implementation complexity, respectively. For the carrier and the symbol timing recovery, the structure of the preamble was proposed based on the IEEE 802.11 FHSS frame format to improve detection probability. The computer simulation results and power budget analysis implies that the proposed system can be usedin simple wireless communications in place of such as analog walkie-talkies.

Design and Verification of IEEE 802.15.4 LR-WPAN 2.4GHz Base-band for Ubiquitous Sensor Network (유비쿼터스 센서 네트워크를 위한 IEEE 802.15.4 LR-WPAN 2.4GHz 베이스 밴드 설계 및 검증)

  • Lee Seung-Yerl;Kim Dong-Sun;Kim Hyun-Sick;Chung Duck-Jin
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.1 s.343
    • /
    • pp.49-56
    • /
    • 2006
  • This paper describes the design and the verification of IEEE 802.15.4 LR-WPAN 2.4GHz Physical layer for Ubiquitous Sensor Network(USN). We designed the Carrier Frequency Offset(CFO) compensation satisfied the frequency tolerance of IEEE 802.15.4 LR-WPAN and the adaptive matched filter that re-setting of the threshold for the symbol synchronization of the various USN environment. The multiplications is reduced 1/16 by this method each other at i, q phases and has 0.5dB performance improvement in detection probability. Proposed baseband system is designed with verilog HDL and implemented using FPGA prototype board.

A Development of PM10 Forecasting System (미세먼지 예보시스템 개발)

  • Koo, Youn-Seo;Yun, Hui-Young;Kwon, Hee-Yong;Yu, Suk-Hyun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.6
    • /
    • pp.666-682
    • /
    • 2010
  • The forecasting system for Today's and Tomorrow's PM10 was developed based on the statistical model and the forecasting was performed at 9 AM to predict Today's 24 hour average PM10 concentration and at 5 PM to predict Tomorrow's 24 hour average PM10. The Today's forecasting model was operated based on measured air quality and meteorological data while Tomorrow's model was run by monitored data as well as the meteorological data calculated from the weather forecasting model such as MM5 (Mesoscale Meteorological Model version 5). The observed air quality data at ambient air quality monitoring stations as well as measured and forecasted meteorological data were reviewed to find the relationship with target PM10 concentrations by the regression analysis. The PM concentration, wind speed, precipitation rate, mixing height and dew-point deficit temperature were major variables to determine the level of PM10 and the wind direction at 500 hpa height was also a good indicator to identify the influence of long-range transport from other countries. The neural network, regression model, and decision tree method were used as the forecasting models to predict the class of a comprehensive air quality index and the final forecasting index was determined by the most frequent index among the three model's predicted indexes. The accuracy, false alarm rate, and probability of detection in Tomorrow's model were 72.4%, 0.0%, and 42.9% while those in Today's model were 80.8%, 12.5%, and 77.8%, respectively. The statistical model had the limitation to predict the rapid changing PM10 concentration by long-range transport from the outside of Korea and in this case the chemical transport model would be an alternative method.

Simplified PAR Reduction Technique for MIMO-OFDM System (MIMO-OFDM 시스템에서 간략화된 PAR 감쇄 기법)

  • Song Hyoung-Kyu;Kook Hyung-Joon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.12C
    • /
    • pp.1181-1185
    • /
    • 2005
  • A combining of MIMO signal processing with OFDM is regarded as a promising solution of enhancing the performance of next generation wireless system. Therefore, in this paper, an OFDM-based wireless system employing layered space-time architecture is considered for a high-rate transmission. In the MIMO-OFDM system, we evaluate the PAR performance using the SLM approaches. The investigated SLM scheme for MIMO-OFDM signals selects the transmitted sequence with lowest average PAR over all transmitting antennas and retrieves the side information very accurately at the expense of a slight degradation of the PAR performance. The low probability of false side information can improve the overall detection performance of the MIMO-OFDM system with erroneous side information compared to the ordinary SLM approache, respectively. Also, we provide closed form of the average BER performance in MIMO-OFDM system using analytic approach.

Measurement System for Performance Evaluation of Acoustic Materials in a Small Water Tank (소형수조에서 음향재료의 반향음감소와 투과손실 측정시스템 구성)

  • Shin, Mi-Ru;Cho, Jung-Hong;Lee, Kyung-Teak;Kim, Jea-Soo;Jeon, Jae-Jin;Ham, Il-Bea;Kang, Chang-Gi
    • The Journal of the Acoustical Society of Korea
    • /
    • v.30 no.2
    • /
    • pp.63-72
    • /
    • 2011
  • Since the detection probability is critically dependent on the target strength (TS) in active sonar and on the radiated noise level (RNL) in passive sonar, the acoustic materials for echo reduction (ER) and transmission loss (TL) are widely used for the stealth of underwater targets. In this paper, a measurement system based on the small water tank, for the frequency range of greater than 30 kHz, is developed and verified using reference targets. In order to design the water tank and the geometry of test samples, a program is developed to calculate the arrival time of interfering signals due to the reflection from water tank walls and also due to the diffraction from the edge of the test samples. Considering all the interfering signals, an optimal experimental configuration for water tank and test samples is designed and used throughout the experiment. Next, the signal processing algorithms to estimate ER and TL are developed based on the measured propagation loss reflecting the geometric spreading characteristics of the transducer. Finally, a set of reference targets such as aluminium plate and perfectly reflecting plate are used in a small water tank to verify the developed measurement system.

Engagement Level Simulator Development for Wire-Guided Torpedo Performance Analysis (선유도어뢰 전술 효과도 분석을 위한 교전수준 모델 개발 연구)

  • Cho, Hyunjin
    • Journal of the Korea Society for Simulation
    • /
    • v.27 no.1
    • /
    • pp.33-38
    • /
    • 2018
  • This paper introduces the simulation concepts and technical approach of wire-guided torpedo performance analysis simulator, as a consequence, provide a framework for understanding overall attack procedures and effectiveness of tactics to torpedo operator. It described the mathematical models of simulation components and weapon engagement principle, especially it derived the closed-form solution of time consumption and leading angle problem of torpedo attack situation based on geographical assumption. In addition, it adopted the proportional navigation guidance at final stage of torpedo attack and also consider the tradeoff relation between target ship speed(propeller noise level) and detection probability, so that it improves the fidelity of physical realism. Simulator is developed with high degree of freedom in the perspective of tactical situation, and it helps user to understand the overall situation and tactical effectiveness.

Preliminary Perfomances Anlaysis of 1.5-m Scale Multi-Purpose Laser Ranging System (1.5m급 다목적형 레이저 추적 시스템 예비 성능 분석)

  • Son, Seok-Hyeon;Lim, Jae-Sung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.9
    • /
    • pp.771-780
    • /
    • 2021
  • The space Debris laser ranging system is called to be a definite type of satellite laser ranging system that measures the distance to satellites. It is a system that performs POD (Precise Orbit Determination) by measuring time of flight by firing a laser. Distance precision can be measured in mm-level units, and it is the most precise system among existing systems. Currently, KASI has built SLR in Sejong and Geochang, and utilized SLR data to verify the precise orbits of the STSAT-2C and KOMASAT-5. In recent years, due to the fall or collision of space debris, its satellites have been threatened, and in terms of security, laser tracking of space objects is receiving great interest in order to protect their own space assets and protect the safety of the people. In this paper, a 1.5m-class main mirror was applied for the system design of a multipurpose laser tracking system that considers satellite laser ranging and space object laser tracking. System preliminary performance analysis was performed based on Link Budget analysis considering specifications of major components.

Aviation Convective Index for Deep Convective Area using the Global Unified Model of the Korean Meteorological Administration, Korea: Part 2. Seasonal Optimization and Case Studies (안전한 항공기 운항을 위한 현업 전지구예보모델 기반 깊은 대류 예측 지수: Part 2. 계절별 최적화 및 사례 분석)

  • Yi-June Park;Jung-Hoon Kim
    • Atmosphere
    • /
    • v.33 no.5
    • /
    • pp.531-548
    • /
    • 2023
  • We developed the Aviation Convective Index (ACI) for predicting deep convective area using the operational global Numerical Weather Prediction model of the Korea Meteorological Administration. Seasonally optimized ACI (ACISnOpt) was developed to consider seasonal variabilities on deep convections in Korea. Yearly optimized ACI (ACIYrOpt) in Part 1 showed that seasonally averaged values of Area Under the ROC Curve (AUC) and True Skill Statistics (TSS) were decreased by 0.420% and 5.797%, respectively, due to the significant degradation in winter season. In Part 2, we developed new membership function (MF) and weight combination of input variables in the ACI algorithm, which were optimized in each season. Finally, the seasonally optimized ACI (ACISnOpt) showed better performance skills with the significant improvements in AUC and TSS by 0.983% and 25.641% respectively, compared with those from the ACIYrOpt. To confirm the improvements in new algorithm, we also conducted two case studies in winter and spring with observed Convectively-Induced Turbulence (CIT) events from the aircraft data. In these cases, the ACISnOpt predicted a better spatial distribution and intensity of deep convection. Enhancements in the forecast fields from the ACIYrOpt to ACISnOpt in the selected cases explained well the changes in overall performance skills of the probability of detection for both "yes" and "no" occurrences of deep convection during 1-yr period of the data. These results imply that the ACI forecast should be optimized seasonally to take into account the variabilities in the background conditions for deep convections in Korea.