• Title/Summary/Keyword: probability models

Search Result 1,131, Processing Time 0.028 seconds

Application of Conditional Spectra to Seismic Fragility Assessment for an NPP Containment Building based on Nonlinear Dynamic Analysis (조건부스펙트럼을 적용한 원전 격납건물의 비선형 동적 해석 기반 지진취약도평가)

  • Shin, Dong-Hyun;Park, Ji-Hun;Jeon, Seong-Ha
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.179-189
    • /
    • 2021
  • Conditional spectra (CS) are applied to the seismic fragility assessment of a nuclear power plant (NPP) containment building for comparison with a relevant conventional uniform hazard response spectrum (UHRS). Three different control frequencies are considered in developing conditional spectra. The contribution of diverse magnitudes and epicentral distances is identified from deaggregation for the UHRS at a control frequency and incorporated into the conditional spectra. A total of 30 ground motion records are selected and scaled to simulate the probability distribution of each conditional spectra, respectively. A set of lumped mass stick models for the containment building are built considering nonlinear bending and shear deformation and uncertainty in modeling parameters using the Latin hypercube sampling technique. Incremental dynamic analysis is conducted for different seismic input models in order to estimate seismic fragility functions. The seismic fragility functions and high confidence of low probability of failure (HCLPF) are calculated for different seismic input models and analyzed comparatively.

Variable selection and prediction performance of penalized two-part regression with community-based crime data application

  • Seong-Tae Kim;Man Sik Park
    • Communications for Statistical Applications and Methods
    • /
    • v.31 no.4
    • /
    • pp.441-457
    • /
    • 2024
  • Semicontinuous data are characterized by a mixture of a point probability mass at zero and a continuous distribution of positive values. This type of data is often modeled using a two-part model where the first part models the probability of dichotomous outcomes -zero or positive- and the second part models the distribution of positive values. Despite the two-part model's popularity, variable selection in this model has not been fully addressed, especially, in high dimensional data. The objective of this study is to investigate variable selection and prediction performance of penalized regression methods in two-part models. The performance of the selected techniques in the two-part model is evaluated via simulation studies. Our findings show that LASSO and ENET tend to select more predictors in the model than SCAD and MCP. Consequently, MCP and SCAD outperform LASSO and ENET for β-specificity, and LASSO and ENET perform better than MCP and SCAD with respect to the mean squared error. We find similar results when applying the penalized regression methods to the prediction of crime incidents using community-based data.

Survey of Visual Search Performance Models to Evaluate Accuracy and Speed of Visual Search Tasks

  • Kee, Dohyung
    • Journal of the Ergonomics Society of Korea
    • /
    • v.36 no.3
    • /
    • pp.255-265
    • /
    • 2017
  • Objective: This study aims to survey visual search performance models to assess and predict individual's visual tasks in everyday life and industrial sites. Background: Visual search is one of the most frequently performed and critical activities in everyday life and works. Visual search performance models are needed when designing or assessing the visual tasks. Method: This study was mainly based on survey of literatures related to ergonomics relevant journals and web surfing. In the survey, the keywords of visual search, visual search performance, visual search model, etc. were used. Results: On the basis of the purposes, developing methods and results of the models, this study categorized visual search performance models into six groups: probability-based models, SATO models, visual lobe-based models, computer vision models, neutral network-based models and detection time models. Major models by the categories were presented with their advantages and disadvantages. More models adopted the accuracy among two factors of accuracy and speed characterizing visual tasks as dependent variables. Conclusion: This study reviewed and summarized various visual search performance models. Application: The results would be used as a reference or tool when assessing the visual tasks.

Application of Jackknife Method for Determination of Representative Probability Distribution of Annual Maximum Rainfall (연최대강우량의 대표확률분포형 결정을 위한 Jackknife기법의 적용)

  • Lee, Jae-Joon;Lee, Sang-Won;Kwak, Chang-Jae
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.10
    • /
    • pp.857-866
    • /
    • 2009
  • In this study, basic data is consisted annual maximum rainfall at 56 stations that has the rainfall records more than 30years in Korea. The 14 probability distributions which has been widely used in hydrologic frequency analysis are applied to the basic data. The method of moments, method of maximum likelihood and probability weighted moments method are used to estimate the parameters. And 4-tests (chi-square test, Kolmogorov-Smirnov test, Cramer von Mises test, probability plot correlation coefficient (PPCC) test) are used to determine the goodness of fit of probability distributions. This study emphasizes the necessity for considering the variability of the estimate of T-year event in hydrologic frequency analysis and proposes a framework for evaluating probability distribution models. The variability (or estimation error) of T-year event is used as a criterion for model evaluation as well as three goodness of fit criteria (SLSC, MLL, and AIC) in the framework. The Jackknife method plays a important role in estimating the variability. For the annual maxima of rainfall at 56 stations, the Gumble distribution is regarded as the best one among probability distribution models with two or three parameters.

V-t Characteristics and Survival Probability of Turn-to-Turn Models for HTS Transformer (고온초전도 변압기를 위한 턴간 모델의 V-t 특성 및 생존 확률)

  • Baek, Seung-Myeong;Cheon, Hyeon-Gweon;Nguyen, Van-Dung;Seok, Bok-Yeol;Kim, Sang-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.356-362
    • /
    • 2004
  • Using multi wrapped copper by polyimide film for HTS transformer, the breakdown and V-t characteristics of two type models for turn-to-turn, one is point contact model, the other is surface contact model, were investigated under ac and impulse voltage at 77 K. A material that is Polyimide film (Kapton) 0.025 mm thickness is used for multi wrapping of the electrode. Statistical analysis of the results using Weibull distribution to examine the wrapping number effects on V-t characteristics under at voltage as well as breakdown voltage under ac and impulse voltage in $LN_2$ was carried. Also, survival analysis was performed according to the Kaplan-Meier method. The breakdown voltages for surface contact model are lower than that of the point contact model, because the contact area of surface contact model is wider than that of point contact model. At the same time, the shape parameter of the point contact model is a little bit larger than the of the surface contact model. The time to breakdown tn is decreased as the applied voltage is increased, and the lifetime indices slightly are increased as the number of layers is increased. According to the increasing applied voltage and decreasing wrapping number, the survival probability is increased.

  • PDF

Statistical Applications for the Prediction of White Hispanic Breast Cancer Survival

  • Khan, Hafiz Mohammad Rafiqullah;Saxena, Anshul;Gabbidon, Kemesha;Ross, Elizabeth;Shrestha, Alice
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.14
    • /
    • pp.5571-5575
    • /
    • 2014
  • Background: The ability to predict the survival time of breast cancer patients is important because of the potential high morbidity and mortality associated with the disease. To develop a predictive inference for determining the survival of breast cancer patients, we applied a novel Bayesian method. In this paper, we propose the development of a databased statistical probability model and application of the Bayesian method to predict future survival times for White Hispanic female breast cancer patients, diagnosed in the US during 1973-2009. Materials and Methods: A stratified random sample of White Hispanic female patient survival data was selected from the Surveillance Epidemiology and End Results (SEER) database to derive statistical probability models. Four were considered to identify the best-fit model. We used three standard model-building criteria, which included Akaike Information Criteria (AIC), Bayesian Information Criteria (BIC), and Deviance Information Criteria (DIC) to measure the goodness of fit. Furthermore, the Bayesian method was used to derive future survival inferences for survival times. Results: The highest number of White Hispanic female breast cancer patients in this sample was from New Mexico and the lowest from Hawaii. The mean (SD) age at diagnosis (years) was 58.2 (14.2). The mean (SD) of survival time (months) for White Hispanic females was 72.7 (32.2). We found that the exponentiated Weibull model best fit the survival times compared to other widely known statistical probability models. The predictive inference for future survival times is presented using the Bayesian method. Conclusions: The findings are significant for treatment planning and health-care cost allocation. They should also contribute to further research on breast cancer survival issues.

The effects of caring for grandchIldren on grandparents' health (손자녀 돌봄이 조부모의 건강에 미치는 영향)

  • Yang, Hae Kyung
    • Journal of Family Resource Management and Policy Review
    • /
    • v.20 no.3
    • /
    • pp.1-23
    • /
    • 2016
  • This study analyzes the effects of caring for grandchildren on Korean grandparents' health, using the Korean Longitudinal Study of Aging from 2006 to 2012. We investigate how caregiving is provided and analyze the effects of caregiving on grandparents' physical health, mental health, and health-related behaviors. As elderly people's health is generally frail, it is unclear whether the provision of childcare affects their health negatively. We control for the endogeneity of caregiving by an individual fixed effect (FE) model and instrumental variable-fixed effect (FE-IV) models. Using these models, we determine the endogeneity of caregiving and show that the significant effects of caregiving on health disappear as we control for endogeneity in the FE and FE-IV models. Even after controlling for endogeneity, we find that caregiving increases the probability of feeling pain as well as the number of different types of pain. Furthermore, caregiving increases the probability of restrictions on daily activities because of pain. On the other hand, caregiving reduces the symptoms of depression. In relation to health-related behaviors, caregiving reduces the probability of physical exercise and regular meals. Our results imply that although caregiving has a positive effect on mental health, the increase in physical pain and in non-healthy behaviors may lead to a deterioration of the caregiver's long-term health, which in turn may increase the medical costs of the elderly. Potential policy alternatives are discussed in the paper.

Noise Removal using a Convergence of the posteriori probability of the Bayesian techniques vocabulary recognition model to solve the problems of the prior probability based on HMM (HMM을 기반으로 한 사전 확률의 문제점을 해결하기 위해 베이시안 기법 어휘 인식 모델에의 사후 확률을 융합한 잡음 제거)

  • Oh, Sang-Yeob
    • Journal of Digital Convergence
    • /
    • v.13 no.8
    • /
    • pp.295-300
    • /
    • 2015
  • In vocabulary recognition using an HMM model which models the prior distribution for the observation of a discrete probability distribution indicates the advantages of low computational complexity, but relatively low recognition rate. The Bayesian techniques to improve vocabulary recognition model, it is proposed using a convergence of two methods to improve recognition noise-canceling recognition. In this paper, using a convergence of the prior probability method and techniques of Bayesian posterior probability based on HMM remove noise and improves the recognition rate. The result of applying the proposed method, the recognition rate of 97.9% in vocabulary recognition, respectively.

Ruin Probability on Insurance Risk Models (보험위험 확률모형에서의 파산확률)

  • Park, Hyun-Suk;Choi, Jeong-Kyu
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.4
    • /
    • pp.575-586
    • /
    • 2011
  • In this paper, we study an asymptotic behavior of the finite-time ruin probability of the compound Poisson model in the case that the initial surplus is large. To compare an exact ruin probability with an approximate one, we place the focus on the exact calculation for the ruin probability when the claim size distribution is regularly varying tailed (i.e. exponential claims and inverse Gaussian claims). We estimate an adjustment coefficient in these examples and show the relationship between the adjustment coefficient and the safety premium. The illustration study shows that as the safety premium increases so does the adjustment coefficient. Larger safety premium means lower "long-term risk", which only stands to reason since higher safety premium means a faster rate of safety premium income to offset claims.

Frequency analysis of nonidentically distributed large-scale hydrometeorological extremes for South Korea

  • Lee, Taesam;Jeong, Changsam;Park, Taewoong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.537-537
    • /
    • 2015
  • In recent decades, the independence and identical distribution (iid) assumption for extreme events has been shown to be invalid in many cases because long-term climate variability resulting from phenomena such as the Pacific decadal variability and El Nino-Southern Oscillation may induce varying meteorological systems such as persistent wet years and dry years. Therefore, in the current study we propose a new parameter estimation method for probability distribution models to more accurately predict the magnitude of future extreme events when the iid assumption of probability distributions for large-scale climate variability is not adequate. The proposed parameter estimation is based on a metaheuristic approach and is derived from the objective function of the rth power probability-weighted sum of observations in increasing order. The combination of two distributions, gamma and generalized extreme value (GEV), was fitted to the GEV distribution in a simulation study. In addition, a case study examining the annual hourly maximum precipitation of all stations in South Korea was performed to evaluate the performance of the proposed approach. The results of the simulation study and case study indicate that the proposed metaheuristic parameter estimation method is an effective alternative for accurately selecting the rth power when the iid assumption of extreme hydrometeorological events is not valid for large-scale climate variability. The maximum likelihood estimate is more accurate with a low mixing probability, and the probability-weighted moment method is a moderately effective option.

  • PDF