• Title/Summary/Keyword: probabilistic-based

Search Result 1,704, Processing Time 0.024 seconds

Risk Analysis for Cut Slope using Probabilistic Index of Landslide (사면파괴 가능성 지수를 이용한 절취사면 위험도 분석)

  • Jang, Hyun-Shic;Oh, Chan-Sung;Jang, Bo-An
    • The Journal of Engineering Geology
    • /
    • v.17 no.2 s.52
    • /
    • pp.163-176
    • /
    • 2007
  • Landslides which is one of the major natural hazard is defined as a mass movement of weathered material rock and debris due to gravity and can be triggered by complex mechanism. It causes enormous property damages and losses of human lift directly and indirectly. In order to mitigate landslide risk effectively, a new method is required to develope for better understanding of landslide risk based on the damaged cost produce, investment priority data, etc. In this study, we suggest a new evaluation method for slope stability using risk analysis. 30 slopes including 10 stable slopes, 10 slopes of possible failure and 10 failed slopes along the national and local roads are examined. Risk analysis comprises the hazard analysis and the consequence analysis. Risk scores evaluated by risk analysis show very clear boundaries for each category and are the highest for the failed slopes and the lowest for the stable slopes. The evaluation method for slope stability suggested by this research may define the condition and stability of slope more clearly than other methods suggested by others.

Variation of probability of sonar detection by internal waves in the South Western Sea of Jeju Island (제주 서남부해역에서 내부파에 의한 소나 탐지확률 변화)

  • An, Sangkyum;Park, Jungyong;Choo, Youngmin;Seong, Woojae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.1
    • /
    • pp.31-38
    • /
    • 2018
  • Based on the measured data in the south western sea of Jeju Island during the SAVEX15(Shallow Water Acoustic Variability EXperiment 2015), the effect of internal waves on the PPD (Predictive Probability of Detection) of a sonar system was analyzed. The southern west sea of Jeju Island has complex flows due to internal waves and USC (Underwater Sound Channel). In this paper, sonar performance is predicted by probabilistic approach. The LFM (Linear Frequency Modulation) and MLS (Maximum Length Sequence) signals of 11 kHz - 31 kHz band of SAVEX15 data were processed to calculate the TL (Transmission Loss) and NL (Noise Level) at a distance of approximately 2.8 km from the source and the receiver. The PDF (Probability Density Function) of TL and NL is convoluted to obtain the PDF of the SE (Signal Excess) and the PPD according to the depth of the source and receiver is calculated. Analysis of the changes in the PPD over time when there are internal waves such as soliton packet and internal tide has confirmed that the PPD value is affected by different aspects.

A Study on the Architectural Environment as a Combination of Performance and Event (퍼포먼스.이벤트의 결합체로서 건축환경연구)

  • 김주미
    • Archives of design research
    • /
    • v.14
    • /
    • pp.121-138
    • /
    • 1996
  • The purpose of this study is to develop a new architectural language and design strategies that would anticipate and incorporate new historical situations and new paradigms to understand the world. It consists of four sections as follows: First, it presents a new interpretation of space, human body, and movement that we find in modern art and tries to combine that new artistic insight with environmental design to provide a theoretical basis for performance-event architecture. Second, it conceives of architectural environment as a combination of space, movement, and probabilistic situations rather than a mere conglomeration of material. It also perceives the environment as a stage for performance and the act of designing as a performance. Third, in this context, man is conceived of as an organic system that responds to, interacts with, and adapts himself to his environment through self-regulation. By the same token, architecture should be a dynamic system that undergoes a constant transformation in its attempt to accommodate human actions and behaviors as he copes with the contemporary philosophy characterized by the principle of uncertainty, fast-changing society, and the new developments in technology. Fourth, the relativistic and organic view-point that constitutes the background for all this is radically different from the causalistic and mechanistic view that characterized the forms and functions of modernistic design. The present study places a great emphases on dematerialistic conception of environment and puts forth a disprogramming method that would accommodate interchangeability in the passage of time and the intertextuality of form and function. In the event, performance-event architecture is a strategy based on the systems world-view that would enable the recovery of man's autonomy and the reconception of his environment as an object of art.

  • PDF

Reliability Assessment of Fatigue Crack Propagation using Response Surface Method (응답면기법을 활용한 피로균열진전 신뢰성 평가)

  • Cho, Tae Jun;Kim, Lee Hyeon;Kyung, Kab Soo;Choi, Eun Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.6
    • /
    • pp.723-730
    • /
    • 2008
  • Due to the higher ratio of live load to total loads of railway bridges, the accumulated damage by cyclic fatigue is significant. Moreover, it is highly possible that the initiated crack grows faster than that of highway bridges. Therefore, it is strongly needed to assess the safety for the accumulated damage analytically. The initiation and growth of fatigue-crack are related with the stress range, number of cycles, and the stiffness of the structural system. The stiffness of the structural system includes uncertainties of the planning, design, construction and maintenance, which varies as time goes. In this study, the authors developed the design and risk assessment techniques based on the reliability theories considering the uncertainties in load and resistance. For the probabilistic risk assessment of crack growth and the remaining life of the structures by the cyclic load of railway and subway bridges, response surface method (RSM) combined with first order second moment method were used. For composing limit state function, the stress range, stress intensity factor and the remaining life were selected as input important random variables to the RSM program. The probabilities of failure and the reliability indices of fatigue life for the considered specimen under cyclic loads were evaluated and discussed.

Risk-Targeted Seismic Performance of Steel Ordinary Concentrically Braced Frames Considering Seismic Hazard (지진재해도를 고려한 철골 보통중심가새골조의 위험도기반 내진성능)

  • Shin, Dong-Hyeon;Hong, Suk-Jae;Kim, Hyung-Joon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.5
    • /
    • pp.371-380
    • /
    • 2017
  • The risk-targeted seismic design concept was first included in ASCE/SEI 7-10 to address problems related to the uniform-hazard based seismic concept that has been constructed without explicitly considering probabilistic uncertainties in the collapse capacities of structures. However, this concept is not yet reflected to the current Korean building code(KBC) because of insufficient strong earthquake data occurred at the Korean peninsula and little information on the collapse capacities of structures. This study evaluates the risk-targeted seismic performance of steel ordinary concentrically braced frames(OCBFs). To do this, the collapse capacities of prototype steel OCBFs are assessed with various analysis parameters including building locations, building heights and soil conditions. The seismic hazard curves are developed using an empirical spectral shape prediction model that is capable of reflecting the characteristics of earthquake records. The collapse probabilities of the prototype steel OCBFs located at the Korean major cities are then evaluated using the risk integral concept. As a result, analysis parameters considerably influence the collapse probabilities of steel OCBFs. The collapse probabilities of taller steel OCBFs exceed the target seismic risk of 1 percent in 50 years, which the introduction of the height limitation of steel OCBFs into the future KBC should be considered.

Design of an Integrated Monitoring System for Constructional Structures Based on Mobile Cloud in Traditional Towns with Local Heritage

  • Min, Byung-Won;Oh, Sang-Hoon;Oh, Yong-Sun;Okazaki, Yasuhisa;Yoo, Jae-Soo;Park, Sun-Gyu;Noh, Hwang-Woo
    • International Journal of Contents
    • /
    • v.11 no.2
    • /
    • pp.37-49
    • /
    • 2015
  • Sensors, equipment, ICT facilities and their corresponding software have a relatively short lifetime relative to that of constructional structure, so these devices have to be continuously fixed or exchanged during maintenance and management. Furthermore, software or analysis tools should be periodically upgraded according to advances in ICT and analysis technology. Conventional monitoring systems have serious problems in that it is difficult for site engineers to modify or upgrade hardware and analysis algorithms. Moreover, we depend on the original system developer when we want to modify or upgrade inner program structures. In this paper, we propose a novel design for integrated maintenance and management of a monitoring system by applying the mobile cloud concept. The system is intended for use in disaster prevention of constructional structures, including bridges, tunnels, and in traditional buildings in a local heritage village, we analyze the status of these structures over a long term or a short-term period as well as in disaster situations. Data are collected over a mobile cloud and future expectations are analyzed according to probabilistic and statistical techniques. We implement our integrated monitoring system to solve the existing problems mentioned above. The final goal of this study is to design and implement a monitoring system for more than 10,000 structures spread within Korea. Furthermore, we can specifically apply the monitoring system presented here to a bridge made from timber in Asan Oeam Village and a traditional house in Andong Hahoe Village to monitor for possible disasters. The entire system design and implementation can be developed on the LinkSaaS platform and the monitoring services can also be implemented on the platform. We prove that the proposed system has good performance by performing a TTA authentication test, web accommodation test, and operation test using emulated data.

Analysis and Prediction for Spatial Distribution of Functional Feeding Groups of Aquatic Insects in the Geum River (금강 수계 수서곤충 섭식기능군의 공간분포 분석 및 예측)

  • Kim, Ki-Dong;Park, Young-Jun;Nam, Sang-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.1
    • /
    • pp.99-118
    • /
    • 2012
  • The aim of this study is to define a correlation between spatial distribution characteristics of FFG(Functional Feeding Groups) of aquatic insects and related environmental factors in the Geum River based on the theory of RCC(River Continuum Concept). For that objective we had used SMRA(Stepwise Multiple Regression Analysis) method to analyze close relationship between the distribution of aquatic insects and the physical and chemical factors that may affect their inhabiting environment in the study area. And then, a probabilistic method named Frequency Ratio Model(FRM) and spatial analysis function of GIS were applied to produce a predictive distribution map of biota community considering their distribution characteristics according to the environmental factors as related variables. As a result of SMRA, the values of decision coefficient for factors of elevation, stream width, flow velocity, conductivity, temperature and percentage of sand showed higher than 0.5. Therefore these 6 environmental factors were considered as major factors that might affect the distribution characteristics of aquatic insects. Finally, we had calculated RMSE(Root Mean Square Error) between the predicted distribution map and prior survey database from other researches to verify the result of this study. The values of RMSE were calculated from 0.1892 to 0.4242 according to each FFG so we could find out a high reliability of this study. The results of this study might be used to develop a new estimation method for aquatic ecosystem with macro invertebrate community and also be used as preliminary data for conservation and restoration of stream habitats.

Application and Comparison of Dynamic Artificial Neural Networks for Urban Inundation Analysis (도시침수 해석을 위한 동적 인공신경망의 적용 및 비교)

  • Kim, Hyun Il;Keum, Ho Jun;Han, Kun Yeun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.5
    • /
    • pp.671-683
    • /
    • 2018
  • The flood damage caused by heavy rains in urban watershed is increasing, and, as evidenced by many previous studies, urban flooding usually exceeds the water capacity of drainage networks. The flood on the area which considerably urbanized and densely populated cause serious social and economic damage. To solve this problem, deterministic and probabilistic studies have been conducted for the prediction flooding in urban areas. However, it is insufficient to obtain lead times and to derive the prediction results for the flood volume in a short period of time. In this study, IDNN, TDNN and NARX were compared for real-time flood prediction based on urban runoff analysis to present the optimal real-time urban flood prediction technique. As a result of the flood prediction with rainfall event of 2010 and 2011 in Gangnam area, the Nash efficiency coefficient of the input delay artificial neural network, the time delay neural network and nonlinear autoregressive network with exogenous inputs are 0.86, 0.92, 0.99 and 0.53, 0.41, 0.98 respectively. Comparing with the result of the error analysis on the predicted result, it is revealed that the use of nonlinear autoregressive network with exogenous inputs must be appropriate for the establishment of urban flood response system in the future.

Analysis of the 2015 reform plan of government employees pension system (GEPS) through monte carlo simulations (모의실험을 통한 2015년 공무원 연금제도 개정안의 효과분석)

  • Lee, Jieun;Song, Seongjoo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.1
    • /
    • pp.19-32
    • /
    • 2016
  • Due to the increasing fiscal burden and structural unbalanced premium/benefit costs, the new reform on the government employees pension system (GEPS) was considered even after the recent reform in 2009. This article examines the various effects of recent amendment in 2015 on GEPS using a simple probabilistic model. We consider effects on both sides, the pensioners and the government. First of all, the expected net value of pension payment for an individual employee was calculated based on the supposed survival distribution. The fairness of individual pension holders was compared using the benefit-cost ratio. Secondly, from pension system users' point of view, the default probability and the government subsidy were examined by Monte-carlo simulation. From the simulation experiment, we could see that the 2015 reform plan indeed reduces the default probability and the size of the fiscal burden of government by increasing the premium and decreasing the benefit. However, the size of the effect is not very standout at this moment because the number of new employees who are fully subject to the reform will be much smaller than the number of previous employees for a while. Thus, the effect of the reform is expected to appear in a slow manner.

Development of Stochastic Seismic Performance Evaluation Method for Structural Performance Point Based on Capacity Spectrum Method (역량스펙트럼법을 통한 구조물 성능점의 확률적 기반 내진성능평가기법 개발)

  • Choi, Insub;Jang, Jisang;Kim, JunHee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.6
    • /
    • pp.523-530
    • /
    • 2017
  • In this study, a method of probabilistic evaluation of the performance point of the structure obtained by capacity spectrum method (CSM) is presented. The performance point of the 4-story and 1-bay steel structure was determined by using CSM according to ATC-40. In order to analyze whether the demand spectrums exceed the performance limit of the structure, the limit displacements are derived for the performance limit of the structure defined from the plastic deformation angle of the structural member. In addition, by selecting a total of 30 artificial seismic wave having the response spectrum similar to the design response spectrum, the fragility curves were derived by examining whether the response spectrum obtained from the artificial seismic wave were exceeded each performance limit according to the spectral acceleration. The maximum likelihood method was used to derive the fragility curve using observed excess probabilities. It has been confirmed that there exists a probability that the response acceleration value of the design response spectrum corresponding to each performance limit exceeds the performance limit. This method has a merit that the stochastic evaluation can be performed considering the uncertainty of the seismic waves with respect to the performance point of the structure, and the analysis time can be shortened because the incremental dynamic analysis (IDA) is not necessary.