• Title/Summary/Keyword: probabilistic process

Search Result 385, Processing Time 0.028 seconds

Probabilistic Analysis of System Failure (시스템 오류에 대한 확률적 분석)

  • Seong, Soon-Yong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.3
    • /
    • pp.648-654
    • /
    • 2010
  • Request operations and release operations occur repeatedly in resource allocation systems. The process requesting a resource acquires one by any priority-based mechanism, and returns the resource after some periods. In this system, resource failures lead to delay of resource allocation, or to termination of process holding the failed resource. To analyze this process effectively, this paper designs a probabilistic ACSR, a process algebra that extends ACSR with the probabilistic choice operation. The ability to express/analyze both request-release rates and failure-recovery rates is illustrated using probabilistic ACSR.

Systems Engineering Process Approach to the Probabilistic Safety Assessment for a Spent Fuel Pool of a Nuclear Power Plant (사용후핵연료저장조의 확률론적안전성평가 수행을 위한 시스템엔지니어링 프로세스 적용 연구)

  • Choi, Jin Tae;Cha, Woo Chang
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.17 no.2
    • /
    • pp.82-90
    • /
    • 2021
  • The spent fuel pool (SFP) of a nuclear power plant functions to store the spent fuel. The spent fuel pool is designed to properly remove the decay heat generated from the spent fuel. If the cooling function is lost and proper operator action is not taken, the spent fuel in the storage pool can be damaged. Probabilistic safety assessment (PSA) is a safety evaluation method that can evaluate the risk of a large and complex system. So far, the probabilistic safety assessment of nuclear power plants has been mainly performed on the reactor. This study defined the requirements and the functional architecture for the probabilistic safety assessment of the spent fuel pool (SFP-PSA) by applying the systems engineering process. And, a systematic and efficient methodology was defined according to the architecture.

A Reliability Analysis Application and Comparative Study on Probabilistic Structure Design for an Automatic Salt Collector (자동채염기의 확률론적 구조설계 구현을 위한 신뢰성 해석 응용과 비교연구)

  • Song, Chang Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.12
    • /
    • pp.70-79
    • /
    • 2020
  • This paper describes a comparative study of characteristics of probabilistic design using various reliability analysis methods in the structure design of an automatic salt collector. The thickness sizing variables of the main structural member were considered to be random variables, including the uncertainty of corrosion, which would be an inevitable hazard in the work environment of the automatic salt collector. Probabilistic performance functions were selected from the strength performances of the automatic salt collector structure. First-order reliability method, second-order reliability method, mean value reliability method, and adaptive importance sampling method were applied during the reliability analyses. The probabilistic design performances such as reliability probability and numerical costs based on the reliability analysis methods were compared to the Monte Carlo simulation results. The adaptive importance sampling method showed the most rational results for the probabilistic structure design of the automatic salt collector.

Minimum Expected Cost based Design of Vertical Drain Systems (최소기대비용에 의한 연직배수시설의 설계)

  • Kim, Seong-Pil;Son, Young-Hwan;Chang, Pyung-Wook
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.6
    • /
    • pp.93-101
    • /
    • 2007
  • In general, geotechnical properties have many uncertain aspects, thus probabilistic analysis have been used to consider these aspects. It is, however, quite difficult to select an appropriate target probability for a certain structure or construction process. In this study, minimum expected cost design method based on probabilistic analysis is suggested for design of vertical drains generally used to accelerate consolidation in soft clayey soils. A sensitivity analysis is performed to select the most important uncertain parameters for the design of vertical drains. Monte Carlo simulation is used in sensitivity analysis and probabilistic analysis. Total expected cost, defined as the sum of initial cost and expected additive cost, varies widely with variation of input parameters used in design of vertical drain systems. And probability of failure to get the minimum total expected cost varies under the different design conditions. A minimum value of total expected cost is suggested as a design value in this study. The proposed design concept is applicable to unit construction process because this approach is to consider the uncertainties using probabilistic analysis and uncertainties of geotechnical properties.

Probabilistic evaluation of chloride ingress process in concrete structures considering environmental characteristics

  • Taisen, Zhao;Yi, Zhang;Kefei, Li;Junjie, Wang
    • Structural Engineering and Mechanics
    • /
    • v.84 no.6
    • /
    • pp.831-849
    • /
    • 2022
  • One of the most prevalent causes of reinforced concrete (RC) structural deterioration is chloride-induced corrosion. This paper aims to provide a comprehensive insight into the environmental effect of RC's chloride ingress process. The first step is to investigate how relative humidity, temperature, and wind influence chloride ingress into concrete. The probability of initiation time of chloride-induced corrosion is predicted using a probabilistic model that considers these aspects. Parametric analysis is conducted on several factors impacting the corrosion process, including the depth of concrete cover, surface chloride concentration, relative humidity, and temperature to expose environmental features. According to the findings, environmental factors such as surface chloride concentration, relative humidity and temperature substantially impact on the time to corrosion initiation. The long- and short-distance impacts are also examined. The meteorological data from the National Meteorological Center of China are collected and used to analyze the environmental characteristics of the chloride ingress issue for structures along China's coastline. Finally, various recommendations are made for improving durability design against chloride attacks.

Online estimation of noise parameters for Kalman filter

  • Yuen, Ka-Veng;Liang, Peng-Fei;Kuok, Sin-Chi
    • Structural Engineering and Mechanics
    • /
    • v.47 no.3
    • /
    • pp.361-381
    • /
    • 2013
  • A Bayesian probabilistic method is proposed for online estimation of the process noise and measurement noise parameters for Kalman filter. Kalman filter is a well-known recursive algorithm for state estimation of dynamical systems. In this algorithm, it is required to prescribe the covariance matrices of the process noise and measurement noise. However, inappropriate choice of these covariance matrices substantially deteriorates the performance of the Kalman filter. In this paper, a probabilistic method is proposed for online estimation of the noise parameters which govern the noise covariance matrices. The proposed Bayesian method not only estimates the optimal noise parameters but also quantifies the associated estimation uncertainty in an online manner. By utilizing the estimated noise parameters, reliable state estimation can be accomplished. Moreover, the proposed method does not assume any stationarity condition of the process noise and/or measurement noise. By removing the stationarity constraint, the proposed method enhances the applicability of the state estimation algorithm for nonstationary circumstances generally encountered in practice. To illustrate the efficacy and efficiency of the proposed method, examples using a fifty-story building with different stationarity scenarios of the process noise and measurement noise are presented.

DISCRETE-TIME BULK-SERVICE QUEUE WITH MARKOVIAN SERVICE INTERRUPTION AND PROBABILISTIC BULK SIZE

  • Lee, Yu-Tae
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.1_2
    • /
    • pp.275-282
    • /
    • 2010
  • This paper analyzes a discrete-time bulk-service queue with probabilistic bulk size, where the service process is interrupted by a Markov chain. We study the joint probability generating function of system occupancy and the state of the Markov chain. We derive several performance measures of interest, including average system occupancy and delay distribution.

A Conversion of Qualitative Probabilistic Expressions into Numerical Probabilities in Korean (한글에서의 정성적 확률 표현의 정량적 변환)

  • Park, Kyung-Soo;Shin, Soo-Hwan;Lee, Jane
    • Journal of the Ergonomics Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.41-49
    • /
    • 2006
  • In a decision making process, the ambiguity of qualitative probabilistic expressions may result in a wrong conclusion. For this reason there had been many studies of quantifying qualitative probabilistic expressions in English-speaking countries. In this research, quantification of Korean qualitative probabilistic expressions is conducted through 4-step questionnaires. The numerical data of 78 verbal phrases were collected in the first questionnaire and classified in two categories (i.e., uncertainty and frequency). In each category, qualitative probabilistic expressions were divided into eleven groups according to the similarity of the numerical values. In the second questionnaire, subjects selected a representative expression for each group, which totaled 11. In the third questionnaire each subject was asked to rank eleven expressions from 1 to 11 with 1 indicating the highest probability. At last, subjects conducted pairwise comparisons to obtain relative weights, which are used to convert into the numerical probability scale.

Probabilistic Safety Assessment of Gas Plant Using Fault Tree-based Bayesian Network (고장수목 기반 베이지안 네트워크를 이용한 가스 플랜트 시스템의 확률론적 안전성 평가)

  • Se-Hyeok Lee;Changuk Mun;Sangki Park;Jeong-Rae Cho;Junho Song
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.4
    • /
    • pp.273-282
    • /
    • 2023
  • Probabilistic safety assessment (PSA) has been widely used to evaluate the seismic risk of nuclear power plants (NPPs). However, studies on seismic PSA for process plants, such as gas plants, oil refineries, and chemical plants, have been scarce. This is because the major disasters to which these process plants are vulnerable include explosions, fires, and release (or dispersion) of toxic chemicals. However, seismic PSA is essential for the plants located in regions with significant earthquake risks. Seismic PSA entails probabilistic seismic hazard analysis (PSHA), event tree analysis (ETA), fault tree analysis (FTA), and fragility analysis for the structures and essential equipment items. Among those analyses, ETA can depict the accident sequence for core damage, which is the worst disaster and top event concerning NPPs. However, there is no general top event with regard to process plants. Therefore, PSA cannot be directly applied to process plants. Moreover, there is a paucity of studies on developing fragility curves for various equipment. This paper introduces PSA for gas plants based on FTA, which is then transformed into Bayesian network, that is, a probabilistic graph model that can aid risk-informed decision-making. Finally, the proposed method is applied to a gas plant, and several decision-making cases are demonstrated.