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DISCRETE-TIME BULK-SERVICE QUEUE WITH
MARKOVIAN SERVICE INTERRUPTION AND
PROBABILISTIC BULK SIZE

YUTAE LEE

ABSTRACT. This paper analyzes a discrete-time bulk-service queue with
probabilistic bulk size, where the service process is interrupted by a Markov
chain. We study the joint probability generating function of system occu-
pancy and the state of the Markov chain. We derive several performance

measures of interest, including average system occupancy and delay distri-
bution.
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1. Introduction

Recently, interests in discrete-time queues have increased due to their numer-
ous applications in the analysis of communication networks and other related
areas (8],(9},[13],[14],[15},(16],[17]. One of the reasons for this is that discrete-
time queues fit the slotted nature of communication networks better than the
continuous-time counterparts, and hence they give more accurate performance
measures of these networks [3].

In many communication networks, resources are assigned on a statistical basis
[1],[2]. Lee [12] analyzed a discrete-time single server queue where the service
process is interrupted by a semi-Markov process. Fiems et al. [6] investigated a
discrete-time single-server queue, where the service process is interrupted by an
on/off process. Mokhtar and Azizoglu [17] analyzed discrete-time queues, where
the behavior of a server at a given time depends on the number of customers in
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the system at that time. All these models assumed non-bulk service in common,
implying that a server can serve at most one customer at a time.

This paper considers a discrete-time bulk-service queue with Markovian ser-
vice interruption and probabilistic bulk size, where the service process is inter-
rupted by a Markov chain. We are interested in the joint probability distribution
of the system occupancy and the state of the Markov chain at an arbitrary slot
boundary, the expected value of the system occupancy, as well as the delay dis-
tribution in the steady-state. While this queueing system may be of interest
from the viewpoint of a queueing theory, it also finds applications in the perfor-
mance analysis of communication networks. Our motivation is the study of the
queueing behavior of a secondary user dynamically sharing the spectrum in the
time-domain by exploiting whitespace between the bursty transmissions of a set
of primary users of a wireless network [7],[15],[16]. The primary users’ occupancy
on the channel at a given time can be collected in the binary random process,
which indicates either that a primary user is actively transmitting on the chan-
nel or that the channel is free for secondary transmissions. The secondary user
monitors the channel every time slot to determine whether or not it is in use by
a primary user. When the channel is temporally unoccupied, the secondary user
uses the channel for secondary transmission. If the channel is detected to busy,
the secondary user does not transmit. In this environment, when we model the
occupancy process with a Markov chain, the queueing system of a secondary
user can be modeled by a two-state Markovian service interruption framework.
Furthermore, to model a random backoff procedure for the competition among
secondary users [5],[15],[16], we consider the probabilistic bulk size for service.

2. Queueing Model

This paper considers a discrete-time bulk-service queue with Markovian ser-
vice interruption and probabilistic bulk size, in which the time axis is divided
into fixed-length contiguous intervals, referred to as slots. It is assumed that the
service times equal to exactly one slot [12].

Customers arrive to the system in accordance with a batch geometric process
[3] and are accommodated in the buffer with infinite waiting-room. Let aj be
the number of customers that arrive during slot k. The numbers of customers
entering the system during consecutive slots are assumed to be i.i.d. non-negative
discrete random variables with an arbitrary probability distribution, and are
characterized by the probability generating function A(z) = E[2%] with finite
mean.

The service process is interrupted by a discrete-time Markov chain {zr, k> 1}
with two states, O(available) and 1(unavailable). A value of z; = 0 indicates that
the server is available for service during slot k, while a value of z;, = 1 indicates
that the server is not available during slot k. The server transits from state % to
state j with positive probability p;; for 7, j = 0, 1. When the server is available,
the customers are served in bulks of variable size. The maximum bulk size is
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assumed to be a finite integer value C. If ¢y, is the bulk size for slot k, the server

can serve up to ¢y customers during slot k. We define u; = P{ck =C—-j }
c

for j =0,1,---,C, and U(z) = Zujzj. It is assumed that the bulk size is
j=0

independent of the underlying Markov chain {x k> 1} and the arrival process

{ak,k > 1}. In this paper, it is also assumed that arriving customer cannot be

accepted into the bulk already undergoing service even if the capacity of server
is available, but has to wait until the next service instant.

3. Queueing analysis

In this section, the queue lengths at the beginning of slots are analyzed. Before
proceeding to the analysis of the queue length, we define a random variable ny,
indicating the number of customers in the queue at the beginning of slot k. Then
{(nk, ),k > 1} constitutes a two dimensional Markov chain embedded at the
beginning of each slot. If we denote by aj, the number of customers entering the
system during slot k, then the system under consideration evolves as follows:

+ : -
a1 = { (nk —ck)t +ag lf Tk : 0, (1)
Nk + ag if ¢ = 1,

where (y)* = max(0, y).
Let Pi(k)(z) = E[I{Ikzi}z”’“} for =0, 1. From (1) we have
- E[I{THl:i}anl]

Q

= PuAR)P(2) + poiA(z) > [Zj_cpék)(z) + B [Ifzp=0.m<c-j})
7=0

~27 B [I{zy=0,mecc—532™]]
(k)
= poiA(2) U;(g) PP(z) + A PP (2) + poiAlz) [Q(k)(l) - Q—C(Z)']

z
po:U(z ; i
A2) [%Hﬁ“(z) + P () + B {20 ) - Q“)(z)ﬂ (2)
for i = 0,1, where the function Q*)(z) is defined as
-1

QW(z) = ZUijEU{zkzo,nmc—j}znk]
7=0

C—c—1

C-1
= D> Ploe=0m=ct Y ute (3)
c=0 3=0
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Now, we will find the ergodic condition for the Markov chain {(nk, Ti), k>

1}. We assume that the Markov chain is irreducible and aperiodic, which is

not a strong assumption. Note that this is true if P{ay = 0}P{a; = 1} > 0.
Obviously, A’(1) < p1o[C — U’(1)]/(po1 + p10) is a necessary condition for the

Markov chain {(nk, Zk) k> 1} to be positive recurrent. Note that the average
service capacity is p1o[C — U’(1)]/(po1 + p10), while during a service time A’(1)
customers will arrive on average. Now, we intend to show that A’(1) < p1o [C’ —

U’ (1)] /(po1 + p1o) is the sufficient condition for the Markov chain {(ny, z), k >

1} to be positive recurrent. We assume that A’(1) < p1o[C — U’(1)]/(po1 + p10)-
Foster’s criterion [11] will be is used in order to show that the Markov chain
{(ng,xr),k > 1} is positive recurrent. We choose a real number o such that

Do1/ [C—U’(l) —A’(l)] < @ < p1o/A’(1) and choose the test function as follows:
f(i,j) = ai + j. The mean drift of the test function is

Zij E[f(”k+1,$k+1) = flne, zk) |(ng, Tw) = (3, ) ]

C
ad'()+poy—cita Y. (i-C+ku f0<i<C, j=0,

— k=C—1i (4)
ad'(1) +por — a|C - U'(1)] ifi>C, j=0,

OéA/(l) - P10 lf] =1.

Then, z;; < oo for all ¢ and j, and
zi; < max (ozA'(l) + po1 — a[C - U’(l)] ,aA'(1) —PIO) <0

for i > C. Let ¢ = max (aA’(l) + po1 —a[C— U’(l)],ozA’(l) —p10>/2 < 0.
Then, z;; < € for ¢ > C. Hence, except finite subset {(i,O) 0<i< C’} of
the state space of {{n,zx)}, we have z; < e < 0. Therefore, by Foster’s
criterion, we see that {(nk,xk),k > 1} is positive recurrent. Thus, assuming
that P{ar = 0}P{ar = 1} > 0, the Markov chain is ergodic if and only if

’ DPio ,
4 < o v/, (5)

Assume that the Markov chain {(nk,xk),k > 1} is ergodic. Then, there
exists unique stationary distribution. Let P;(z) = klim Pi(k)(z)7 i =0,1, de-

note the stationary joint probability generating function of the Markov chain
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{(nk,xk),k > 1}. Letting £ — oo in (2) we obtain

P()(Z) = A(Z) [g%lé(—z)]go(z) +p10P1(z) + % ZCQ(].) - Q(Z)}:l , (6)
Pi(z) = A(z) [1—)0—:@130(2) +p11Pi(z) + % 2°Q(1) — Q(z)}] , (7)

where the function Q(z) is defined as Q(z) = klim Q™ (z). Solving for Py(z) in
(6) and then substituting it in (7), we get the expression for Py(z):
PA(2)[°Q(1) - Q(2)]
Pi(z) = - (8)
1= puA(2)] = poAE)U () [1 - puA(2)] - porp1oA?(:)U(2)
Equation (8) is of indeterminate form, that is, (8) has unknown term Q(z),
but the C unknowns klim P{nk = ¢Tp = 0}, c=0,1,---,C —1, can be
—00

determined by consideration of the zeros of the denominator in (8) that lie in
the closed unit disc {z : |2| < 1}. With Rouche’s theorem, it can be shown
that zc[l - pllA(z)} — pooA(2)U(z) [1 - pHA(z)] — po1p10A%(2)U(z) = 0 has
exactly C zeros in the unit closed disc {z : |z| < 1}. A detailed explanation
can be found in [10],{18]. Since Pi(z) is a continuous function for |z| < 1, the
numerator po1 A(z) [ZCQ(l) —Q(z)| of Pi(z) should vanish at each of the zeros,
yielding C equations. One of the zeros equals 1, and leads to a trivial equation.
However, the relation P1(1) = pg1/ [p()l + pw} provides an additional equation.
Using I"Hospital’s rule, this relation is found to be

P1o / / /
—— | C-U()| -A(1)=CQR1)~ 1). 9
- U] - A1) =0 - Q) ©)
The C roots of z¢ {1—1}1] A(z)} —pooA(2)U (z) [1—p11A(z)] —po1p10AZ(2)U(2) =
0 in the closed unit disc {z : |z| < 1} are denoted by zp = 1,21, -+ ,2¢-1. If

one of the roots is zero of py1 A(z), then it should be 0, which can not be true.

Thus, the C roots are zeros of 2°Q(1) — Q(z), not of pg; A(z). Hence, by writing
c-1

24Q(1) - Q(z) as (z— 1)G H (z—z.) with G a constant, and using (9) to derive

~=1
the value of G, it follows that

c-1
PO o gty - A 1
¢= L?(n =+ P10 -t} -4 (1)} CI;II 1—z (10)

and

C
Q1) - Q(z) = [”—« [c-v) - A’(l)} PR | EAECIY

Po1 + P1o
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so that (8) can be written as

Pl(Z) — pOlA(Z)
29{1 = p11A(2)} — pooA(2)U (2) {1 = p11A(2)} — poip10A%(2)U (2)
C-1
Pio ’ ’ Z— Zc
X [p——-m o {c-U'1}-4 (1)] (z—=1) H T (12)

for |z| < 1. Using (11) and (12) in (6), we can determine

A(2) [poo{l - p11A(Z)} +1001P10A(Z)]

Po(z) = zC{l —1011A(z)} ——pooA(z)U(z){l -—pllA(z)} — po1p10A2(2)U(2)
x [p——mpfpm {c-vw}- A’(l)] (z—1) j]:[: — (13)

Let N(z) be the marginal probability generating function of the queue length
at an arbitrary slot boundary. Clearly, N(z) is given by

N(z)

kl-i-vngo Efz™]
= Py(z)+ Pi(2)
A(z) [1 + (1 —poo — pn)A(z)]
{1 - PuA(2)} — po0AEU ({1 - p11A(2) } - porp10A2(2)U (2)

Cc-1

| c-v - 40 -y ]

Po1 + p1o i

Z— Ze

= (14)

Now we can calculate the mean queue length at an arbitrary slot boundary by
using the differentiation of the probability generating function N(z) for z = 1.
We obtain

N'(1)
c—-1
1 1
=2-— | A (D) +
[ P01+p10} ) ;1—%

2(1 = po1 — 2p10)A'(1)U’(1) — p1oU" (1)

2[;010{0 - U’(l)} — (po1 +P10)A'(1)]

C(C — Dpro ~ 2091 A'(1) +2(1 ~ por — p10) [4/(1)] = (por +pr0)47(1)
2[1010{0 - U'(l)} ~ (po1 +P10)A'(1)] '

4. Delay analysis
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In this section, we find the delay distribution of an arbitrary customer. To do
this, we pick out any customer and call it tagged customer. Before we find the
delay distribution, we need some conditional probabilities. Let D;(l|k) denote
the conditional probability that the remaining delay of the tagged customer in
the k-th position of the buffer at the beginning of a slot is [ slots, given that the

state of the server is ¢, ¢ = 0, 1, at the beginning of the slot. Then, we get the
following:

O~k

>y, k>1,0=1,

=0
Do(llk)y = c

> ujlpeeDoll = 1k = C + )
G=C—k+1
| tpor DIl -1k —C+7)], k>1,01>1,

0 k>1,1=1,

Dultlk) = { p10Do(l — 1[E) + pu Dyl — 11R), k> 111

For each k, the conditional probabilities D;(l}k), i = 0,1, are calculated by
applying above recursive relations on [ repeatedly.

Let m;,, = 11m P{nk =N, = z} be the steady state distribution of the
Markov chain {(nk, zk), k > 1}. Note that the probability of tagged customer
being in the n-th position of its bulk is given by P{a > n}/A'(1) [4], where

a is the generic random variable for {ay}. Then we obtain the probability
distribution of the delay D of a customer as follows:

PD=1} = 2:( Tin Z W{ploDo(Z}n+Q)+P11D1(l|n+‘1)}
n={() g==1

C 0= (n—C+j)T

Pla>
tron D up Y %{pooDo(H(n C+4)" +4q)
Jj=0 g=1

(+1)C-1 l: IC—n

+porD1(ll{n — C + )" +q)}]

5. Conclusions

This paper has presented the queueing analysis of a discrete-time bulk-service
queue with probabilistic bulk size, where the service process is interrupted by a
Markov chain. By means of the probability generating functions, we obtained
key performance measures, such as joint probability distribution of system occu-
pancy and the state of the Markov chain at an arbitrary slot boundary, average
system occupancy, and delay distribution in steady-state.
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