• Title/Summary/Keyword: probabilistic neural network

Search Result 132, Processing Time 0.021 seconds

A Study on Driving Control using Neural Network Identifier (신경회로망 동정기를 이용한 AGV의 주행제어에 관한 연구)

  • 이영진;이진우;손주한;최성욱;김한근;조현철;이권순
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.151-151
    • /
    • 2000
  • The objective of this paper is to develop the new robust and adaptive control system against external environments as applying the probabilistic recognition which is one of the inherent properties of immune system, ability of learning and memorization, and regulation theory of immune network to the system under engineering point of view. In this paper, HIA(Humoral Immune Algorithm) PID controller using Neural Network Identifier was proposed to drive the autonomous guided vehicle(AGV) more effectively. To verify the performance of the proposed HIA PID controller, some experiments for the control of steering and speed of that AGV are performed.

  • PDF

Neural Predictive Coding for Text Compression Using GPGPU (GPGPU를 활용한 인공신경망 예측기반 텍스트 압축기법)

  • Kim, Jaeju;Han, Hwansoo
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.3
    • /
    • pp.127-132
    • /
    • 2016
  • Several methods have been proposed to apply artificial neural networks to text compression in the past. However, the networks and targets are both limited to the small size due to hardware capability in the past. Modern GPUs have much better calculation capability than CPUs in an order of magnitude now, even though CPUs have become faster. It becomes possible now to train greater and complex neural networks in a shorter time. This paper proposed a method to transform the distribution of original data with a probabilistic neural predictor. Experiments were performed on a feedforward neural network and a recurrent neural network with gated-recurrent units. The recurrent neural network model outperformed feedforward network in compression rate and prediction accuracy.

A two-step approach for joint damage diagnosis of framed structures using artificial neural networks

  • Qu, W.L.;Chen, W.;Xiao, Y.Q.
    • Structural Engineering and Mechanics
    • /
    • v.16 no.5
    • /
    • pp.581-595
    • /
    • 2003
  • Since the conventional direct approaches are hard to be applied for damage diagnosis of complex large-scale structures, a two-step approach for diagnosing the joint damage of framed structures is presented in this paper by using artificial neural networks. The first step is to judge the damaged areas of a structure, which is divided into several sub-areas, using probabilistic neural networks with natural Frequencies Shift Ratio inputs. The next step is to diagnose the exact damage locations and extents by using the Radial Basis Function (RBF) neural network with the second Element End Strain Mode of the damaged sub-area input. The results of numerical simulation show that the proposed approach could diagnose the joint damage of framed structures induced by earthquake action effectively and has reliable anti-jamming abilities.

Evaluation Model for Lateral Flow on Soft Ground Using Commitee and Probabilistic Neural Network Theory (군집신경망과 확률신경망 이론을 이용한 연약지반의 측방유동 평가 모델)

  • Kim, Young-Sang;Joo, No-Ah;Lee, Jeong-Jae
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.7
    • /
    • pp.65-76
    • /
    • 2007
  • Recently, there have been many construction projects on soft ground with growth of industry and various construction problems concerning soft soil behavior also have been reported. Especially, foundation piles of abutments and (or) buildings which were constructed on the soft ground have been suffering from a lot of stability problems of inordinary displacement due to lateral flow of soft ground. Although many researches for this phenomena have been carried out, it is still difficult to assess the mechanism of lateral flow on soft ground quantitatively. And reliable design method for judgement of lateral flow occurrence is not established yet. In this study, PNN (probabilistic neural network) and CNN (committee neural network) theories were applied for judgment of lateral flow occurrence based on eat data compiled from Korea and Japan. Predictions of PNN and CNN models for new data which were not used during model development are compared with those predicted by conventional empirical methods. It was found that the developed PNN and CNN models can predict more precise and reliable judgment of lateral flow occurrence than conventional empirical methods.

New Cellular Neural Networks Template for Image Halftoning based on Bayesian Rough Sets

  • Elsayed Radwan;Basem Y. Alkazemi;Ahmed I. Sharaf
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.4
    • /
    • pp.85-94
    • /
    • 2023
  • Image halftoning is a technique for varying grayscale images into two-tone binary images. Unfortunately, the static representation of an image-half toning, wherever each pixel intensity is combined by its local neighbors only, causes missing subjective problem. Also, the existing noise causes an instability criterion. In this paper an image half-toning is represented as a dynamical system for recognizing the global representation. Also, noise is reduced based on a probabilistic model. Since image half-toning is considered as 2-D matrix with a full connected pass, this structure is recognized by the dynamical system of Cellular Neural Networks (CNNs) which is defined by its template. Bayesian Rough Sets is used in exploiting the ideal CNNs construction that synthesis its dynamic. Also, Bayesian rough sets contribute to enhance the quality of the halftone image by removing noise and discovering the effective parameters in the CNNs template. The novelty of this method lies in finding a probabilistic based technique to discover the term of CNNs template and define new learning rules for CNNs internal work. A numerical experiment is conducted on image half-toning corrupted by Gaussian noise.

Classification of Surface Defects on Cold Rolled Strips by Probabilistic Neural Networks (확률신경회로망에 의한 냉연 강판 표면결함의 분류)

  • Song, S.J.;Kim, H.J.;Choi, S.H.;Lee, J.H.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.17 no.3
    • /
    • pp.162-173
    • /
    • 1997
  • Automatic on-line surface inspection systems have been applied for monitoring a quality of steel strip surfaces. One of the important issues in this application is the performance of on-line defect classifiers. Rule-based classification table methods which are conventionally used for this purpose have been suffered from their low performances. In this work, probabilistic neural networks and the enhanced classification tables which are newly proposed here are applied as alternative on-line classifiers to identify types of surface defects on cold rolled strips. Probabilistic neural networks have shown very excellent performance for classification of surface defects.

  • PDF

Safety Assessment and Management Planning of Agricultural Facilities using Neural Network (신경망 이론을 이용한 농업 구조물의 안전도 평가 및 관리계획)

  • Kim, Min-Jong;Lee, Jeong-Jae;Su, Nam-Su
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.156-161
    • /
    • 2001
  • Currently, agricultural facilities are evaluated using either basic inspections or detailed analysis. However, conventional analyses as well as methods based on fuzzy logic and rule of thumb have not been very successful in providing a clear relationship between rating and real state of agricultural facilities, because they can't provide exactly acceptable reliability of degraded structures with manager or supervisor. Therefore, in this stage, we must define probabilistic variables for representing degradation of structures being given damages during a survival time. This paper describes the application of neural network system in developing the relation between subjective ratings and parameters of agricultural reservoir as well as that between subjective and analytical ratings. It is shown that neural networks can be trained and used successfully in estimating a rating based on several parameters. The specific application problem for agricultural reservoir in the rural area of Korea is presented and database is constructed to maintain training data set, the information of inspection and facilities. This study showed that a successful training of a neural network could be useful, especially if the input data set for target problem contains parameters with a diverse combination of inter-correlation coefficients. And the networks had a prediction rating of about $^{\ast}^{\ast}^{\ast}%$. The neural network system is expected to show high performance fairly in estimate than statistical method to use equation that is consisted of very lowly interrelated variables.

  • PDF

Discriminative Training of Predictive Neural Network Models (예측신경회로망 모델의 변별력 있는 학습)

  • Na, Kyung-Min;Rheem, Jae-Yeol;Ann, Sou-Guil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.13 no.1E
    • /
    • pp.64-70
    • /
    • 1994
  • Predictive neural network models are powerful speech recognition models based on a nonlinear pattern prediction. But those models suffer from poor discrimination between acoustically similar words. In this paper we propose an discriminative training algorithm for predictive neural network models. This algorithm is derived from GPD (Generalized Probabilistic Descent) algorithm coupled with MCEF(Minimum Classification Error Formulation). It allows direct minimization of a recognition error rate. Evaluation of our training algoritym on ten Korean digits shows its effectiveness by 30% reduction of recognition error.

  • PDF

A GPD-BASED DISCRIMINATIVE TRAINING ALGORITHM FOR PREDICTIVE NEURAL NETWORK MODELS

  • Na, Kyung-Min;Rheem, Jae-Yeol;Ann, Sou-Guil
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1994.06a
    • /
    • pp.997-1002
    • /
    • 1994
  • Predictive neural network models are powerful speech recognition models based on a nonlinear pattern prediction. Those models can effectively normalize the temporal and spatial variability of speech signals. But those models suffer from poor discrimination between acoustically similar words. In this paper, we propose a discriminative training algorithm for predictive neural network models based on a generalized probabilistic descent (GPD) algorithm and minimum classification error formulation (MCEF). The Evaluation of our training algorithm on ten Korean digits shows its effectiveness by 40% reduction of recognition error.

  • PDF

A Study of ECG Based Cardiac Diseases Diagnoses (심전도 신호를 이용한 심장 질환 진단에 관한 연구)

  • Kim, Hyun-Dong;Yoon, Jae-Bok;Kim, Hyun-Dong;Kim, Tae-Seon
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.328-330
    • /
    • 2004
  • In this paper, ECG based cardiac disease diagnosis models are developed. Conventionally, ECG monitoring equipments can only measure and store ECG signals and they always require medical doctor's diagnosis actions which are not desirable for continuous ambulatory monitoring and diagnosis healthcare systems. In this paper, two kinds of neural based self cardiac disease diagnosis engines are developed and tested for four kinds of diseases, sinus bradycardia, sinus tachycardia, left bundle branch block and right bundle branch block. For diagnosis engines, error backpropagation neural network (BP) and probabilistic neural network (PNN) were applied. Five signal features including heart rate, QRS interval, PR interval, QT interval, and T wave types were selected for diagnosis characteristics. To show the validity of proposed diagnosis engine, MIT-BIH database were used to test. Test results showed that BP based diagnosis engine has 71% of diagnosis accuracy which is superior to accuracy of PNN based diagnosis engine. However, PNN based diagnosis engine showed superior diagnosis accuracy for complex-disease diagnoses than BP based diagnosis engine.

  • PDF