• 제목/요약/키워드: probabilistic models

검색결과 460건 처리시간 0.023초

확률적 확산을 이용한 스테레오 정합 알고리듬 (New stereo matching algorithm based on probabilistic diffusion)

  • 이상화;이충웅
    • 전자공학회논문지S
    • /
    • 제35S권4호
    • /
    • pp.105-117
    • /
    • 1998
  • In this paper, the general formula of disparity estimation based on Bayesian Maximum A Posteriori (MAP) algorithm is derived and implemented with simplified probabilistic models. The probabilistic models are independence and similarity among the neighboring disparities in the configuration.The formula is the generalized probabilistic diffusion equation based on Bayesian model, and can be implemented into the some different forms corresponding to the probabilistic models in the disparity neighborhood system or configuration. And, we proposed new probabilistic models in order to simplify the joint probability distribution of disparities in the configuration. According to the experimental results, the proposed algorithm outperformed the other ones, such as sum of swuared difference(SSD) based algorithm and Scharstein's method. We canconclude that the derived formular generalizes the probabilistic diffusion based on Bayesian MAP algorithm for disparity estimation, and the propsoed probabilistic models are reasonable and approximate the pure joint probability distribution very well with decreasing the computations to 0.01% of the generalized formula.

  • PDF

확률변수의 잔차를 이용한 Mg-Al-Zn 합금의 시편두께 조건에 따른 확률론적 피로균열전파모델 연구 (A Study of Probabilistic Fatigue Crack Propagation Models in Mg-Al-Zn Alloys Under Different Specimen Thickness Conditions by Using the Residual of a Random Variable)

  • 최선순
    • 대한기계학회논문집A
    • /
    • 제36권4호
    • /
    • pp.379-386
    • /
    • 2012
  • 본 논문의 주 목적은 확률변수의 잔차를 이용하여 제안된 확률론적 피로균열전파모델들을 평가하고 Mg-Al-Zn 합금의 확률론적 피로거동을 묘사하기에 적합한 모델을 제시하는 것이다. 제안된 모델은 '확률론적 Paris-Erdogan 모델', '확률론적 Walker 모델', '확률론적 Forman 모델'과 '확률론적 수정 Forman 모델'이다. 이 모델들은 실험적 피로균열전파모델인 Paris-Erdogan 모델, Walker 모델, Forman 모델과 수정 Forman 모델에 확률변수를 도입하여 준비하였다. Mg-Al-Zn 합금의 피로균열전파거동을 묘사하기에 적합한 모델은 일반적으로 '확률론적 Paris-Erdogan 모델'과 '확률론적 Walker 모델'임을 밝혔으며, 시편두께 9.45mm 에서는 '확률론적 Forman 모델'이 적합하였다.

한국어 형태소 분석을 위한 음절 단위 확률 모델 (Syllable-based Probabilistic Models for Korean Morphological Analysis)

  • 심광섭
    • 정보과학회 논문지
    • /
    • 제41권9호
    • /
    • pp.642-651
    • /
    • 2014
  • 본 논문에서는 음절 단위의 한국어 형태소 분석 방법에 적용할 수 있는 세 가지 확률 모델을 제안하고, 품사 태깅 말뭉치를 이용하여 각 확률 모델의 성능을 평가한다. 성능 평가를 위해 1,000만 어절 규모의 세종 말뭉치를 10 개의 세트로 나누고 10 배수 교차 검증 결과 98.4%의 정답 제시율을 얻을 수 있었다. 제안된 확률 모델은 각 음절에 대하여 품사 태그를 먼저 부착한 후 원형 복원 및 형태소 생성을 하기 때문에 원형 복원을 먼저 하는 기존 확률 모델에 비하여 탐색 공간이 크게 줄어들어 형태소 분석 과정이 훨씬 간결하고 효율적이어서 분석 속도가 기존의 초당 수 백 어절에서 14만 7천 어절로 약 174배 가량 향상시킬 수 있었다.

Probabilistic seismic demand models and fragility estimates for reinforced concrete bridges with base isolation

  • Gardoni, Paolo;Trejo, David
    • Earthquakes and Structures
    • /
    • 제4권5호
    • /
    • pp.527-555
    • /
    • 2013
  • This paper proposes probabilistic models for estimating the seismic demands on reinforced concrete (RC) bridges with base isolation. The models consider the shear and deformation demands on the bridge columns and the deformation demand on the isolation devices. An experimental design is used to generate a population of bridges based on the AASHTO LRFD Bridge Design Specifications (AASHTO 2007) and the Caltrans' Seismic Design Criteria (Caltrans 1999). Ground motion records are used for time history analysis of each bridge to develop probabilistic models that are practical and are able to account for the uncertainties and biases in the current, common deterministic model. As application of the developed probabilistic models, a simple method is provided to determine the fragility of bridges. This work facilitates the reliability-based design for this type of bridges and contributes to the transition from limit state design to performance-based design.

Probabilistic shear strength models for reinforced concrete beams without shear reinforcement

  • Song, Jun-Ho;Kang, Won-Hee;Kim, Kang-Su;Jung, Sung-Moon
    • Structural Engineering and Mechanics
    • /
    • 제34권1호
    • /
    • pp.15-38
    • /
    • 2010
  • In order to predict the shear strengths of reinforced concrete beams, many deterministic models have been developed based on rules of mechanics and on experimental test results. While the constant and variable angle truss models are known to provide reliable bases and to give reasonable predictions for the shear strengths of members with shear reinforcement, in the case of members without shear reinforcement, even advanced models with complicated procedures may show lack of accuracy or lead to fairly different predictions from other similar models. For this reason, many research efforts have been made for more accurate predictions, which resulted in important recent publications. This paper develops probabilistic shear strength models for reinforced concrete beams without shear reinforcement based on deterministic shear strength models, understanding of shear transfer mechanisms and influential parameters, and experimental test results reported in the literature. Using a Bayesian parameter estimation method, the biases of base deterministic models are identified as algebraic functions of input parameters and the errors of the developed models remaining after the bias-correction are quantified in a stochastic manner. The proposed probabilistic models predict the shear strengths with improved accuracy and help incorporate the model uncertainties into vulnerability estimations and risk-quantified designs.

Probabilistic condition assessment of structures by multiple FE model identification considering measured data uncertainty

  • Kim, Hyun-Joong;Koh, Hyun-Moo
    • Smart Structures and Systems
    • /
    • 제15권3호
    • /
    • pp.751-767
    • /
    • 2015
  • A new procedure is proposed for assessing probabilistic condition of structures considering effect of measured data uncertainty. In this procedure, multiple Finite Element (FE) models are identified by using weighting vectors that represent the uncertainty conditions of measured data. The distribution of structural parameters is analysed using a Principal Component Analysis (PCA) in relation to uncertainty conditions, and the identified models are classified into groups according to their similarity by using a K-means method. The condition of a structure is then assessed probabilistically using FE models in the classified groups, each of which represents specific uncertainty condition of measured data. Yeondae bridge, a steel-box girder expressway bridge in Korea, is used as an illustrative example. Probabilistic condition of the bridge is evaluated by the distribution of load rating factors obtained using multiple FE models. The numerical example shows that the proposed method can quantify uncertainty of measured data and subsequently evaluate efficiently the probabilistic condition of bridges.

최대하중조건에 따른 Mg-Al-Zn 합금의 확률변수 잔차를 이용한 확률론적 피로균열전파모델 평가 (Evaluation of Probabilistic Fatigue Crack Propagation Models in Mg-Al-Zn Alloys Under Maximum Load Conditions Using Residual of Random Variable)

  • 최선순
    • 대한기계학회논문집A
    • /
    • 제39권1호
    • /
    • pp.63-69
    • /
    • 2015
  • 본 논문의 주 목적은 최대하중조건을 변화시키면서 확률변수의 잔차를 이용하여 확률론적 피로균열전파모델들을 평가하고, Mg-Al-Zn 합금의 피로균열성장거동의 변동성을 묘사하기에 적합한 확률론적 모델을 제시하는 것이다. 평가에 사용된 모델은 피로균열성장의 변동성을 나타내기 위하여 실험적 피로균열전파모델인 Paris-Erdogan 모델, Walker 모델, Forman 모델과 수정 Forman 모델에 확률변수를 도입한 모델이다. 최대하중조건에 따른 Mg-Al-Zn 합금의 피로균열전파거동의 확률적 변동성을 묘사하기에 적합한 모델은 '확률론적 Paris-Erdogan 모델'과 '확률론적 Walker 모델'임을 밝혔으며, 최대하중조건이 피로균열성장의 확률적 변동성에 미치는 영향 또한 고찰하였다.

Optimal intensity measures for probabilistic seismic demand models of RC high-rise buildings

  • Pejovic, Jelena R.;Serdar, Nina N.;Pejovic, Radenko R.
    • Earthquakes and Structures
    • /
    • 제13권3호
    • /
    • pp.221-230
    • /
    • 2017
  • One of the important phases of probabilistic performance-based methodology is establishing appropriate probabilistic seismic demand models (PSDMs). These demand models relate ground motion intensity measures (IMs) to demand measures (DMs). The objective of this paper is selection of the optimal IMs in probabilistic seismic demand analysis (PSDA) of the RC high-rise buildings. In selection process features such as: efficiency, practically, proficiency and sufficiency are considered. RC high-rise buildings with core wall structural system are selected as a case study building class with the three characteristic heights: 20-storey, 30-storey and 40-storey. In order to determine the most optimal IMs, 720 nonlinear time-history analyses are conducted for 60 ground motion records with a wide range of magnitudes and distances to source, and for various soil types, thus taking into account uncertainties during ground motion selection. The non-linear 3D models of the case study buildings are constructed. A detailed regression analysis and statistical processing of results are performed and appropriate PSDMs for the RC high-rise building are derived. Analyzing a large number of results it are adopted conclusions on the optimality of individual ground motion IMs for the RC high-rise building.

Probabilistic tunnel face stability analysis: A comparison between LEM and LAM

  • Pan, Qiujing;Chen, Zhiyu;Wu, Yimin;Dias, Daniel;Oreste, Pierpaolo
    • Geomechanics and Engineering
    • /
    • 제24권4호
    • /
    • pp.399-406
    • /
    • 2021
  • It is a key issue in the tunnel design to evaluate the stability of the excavation face. Two efficient analytical models in the context of the limit equilibrium method (LEM) and the limit analysis method (LAM) are used to carry out the deterministic calculations of the safety factor. The safety factor obtained by these two models agrees well with that provided by the numerical modelling by FLAC 3D, but consuming less time. A simple probabilistic approach based on the Mote-Carlo Simulation technique which can quickly calculate the probability distribution of the safety factor was used to perform the probabilistic analysis on the tunnel face stability. Both the cumulative probabilistic distribution and the probability density function in terms of the safety factor were obtained. The obtained results show the effectiveness of this probabilistic approach in the tunnel design.

Leave-one-out Bayesian model averaging for probabilistic ensemble forecasting

  • Kim, Yongdai;Kim, Woosung;Ohn, Ilsang;Kim, Young-Oh
    • Communications for Statistical Applications and Methods
    • /
    • 제24권1호
    • /
    • pp.67-80
    • /
    • 2017
  • Over the last few decades, ensemble forecasts based on global climate models have become an important part of climate forecast due to the ability to reduce uncertainty in prediction. Moreover in ensemble forecast, assessing the prediction uncertainty is as important as estimating the optimal weights, and this is achieved through a probabilistic forecast which is based on the predictive distribution of future climate. The Bayesian model averaging has received much attention as a tool of probabilistic forecasting due to its simplicity and superior prediction. In this paper, we propose a new Bayesian model averaging method for probabilistic ensemble forecasting. The proposed method combines a deterministic ensemble forecast based on a multivariate regression approach with Bayesian model averaging. We demonstrate that the proposed method is better in prediction than the standard Bayesian model averaging approach by analyzing monthly average precipitations and temperatures for ten cities in Korea.