DOI QR코드

DOI QR Code

A Study of Probabilistic Fatigue Crack Propagation Models in Mg-Al-Zn Alloys Under Different Specimen Thickness Conditions by Using the Residual of a Random Variable

확률변수의 잔차를 이용한 Mg-Al-Zn 합금의 시편두께 조건에 따른 확률론적 피로균열전파모델 연구

  • 최선순 (삼육대학교 카메카트로닉스학과)
  • Received : 2011.04.18
  • Accepted : 2012.01.26
  • Published : 2012.04.01

Abstract

The primary aim of this paper was to evaluate several probabilistic fatigue crack propagation models using the residual of a random variable, and to present the model fit for probabilistic fatigue behavior in Mg-Al-Zn alloys. The proposed probabilistic models are the probabilistic Paris-Erdogan model, probabilistic Walker model, probabilistic Forman model, and probabilistic modified Forman models. These models were prepared by applying a random variable to the empirical fatigue crack propagation models with these names. The best models for describing fatigue crack propagation behavior in Mg-Al-Zn alloys were generally the probabilistic Paris-Erdogan and probabilistic Walker models. The probabilistic Forman model was a good model only for a specimen with a thickness of 9.45 mm.

본 논문의 주 목적은 확률변수의 잔차를 이용하여 제안된 확률론적 피로균열전파모델들을 평가하고 Mg-Al-Zn 합금의 확률론적 피로거동을 묘사하기에 적합한 모델을 제시하는 것이다. 제안된 모델은 '확률론적 Paris-Erdogan 모델', '확률론적 Walker 모델', '확률론적 Forman 모델'과 '확률론적 수정 Forman 모델'이다. 이 모델들은 실험적 피로균열전파모델인 Paris-Erdogan 모델, Walker 모델, Forman 모델과 수정 Forman 모델에 확률변수를 도입하여 준비하였다. Mg-Al-Zn 합금의 피로균열전파거동을 묘사하기에 적합한 모델은 일반적으로 '확률론적 Paris-Erdogan 모델'과 '확률론적 Walker 모델'임을 밝혔으며, 시편두께 9.45mm 에서는 '확률론적 Forman 모델'이 적합하였다.

Keywords

References

  1. Mordike, B. L. and Ebert, T., 2001, "Magnesium Properties-Application-Potential," Materials Science & Engineering (A), Vol. 302, pp. 37-45. https://doi.org/10.1016/S0921-5093(00)01351-4
  2. Tokaji, K., Kamakura, M., Ishiizumi, Y. and Hasegawa, N., 2004, "Fatigue Behaviour and Fracture Mechanism of a Rolled AZ31 Magnesium Alloy," International Journal of Fatigue, Vol. 26, pp. 1217-1224. https://doi.org/10.1016/j.ijfatigue.2004.03.015
  3. Tokaji, K., Nakajima, M. and Uematsu, Y., 2009, "Fatigue Crack Propagation and Fracture Mechanisms of Wrought Magnesium Alloys in Different Environments," International Journal of Fatigue, Vol. 31, Issue 7, pp. 1137-1143. https://doi.org/10.1016/j.ijfatigue.2008.12.012
  4. Sivapragash, M., Lakshminarayanan, P. R. and Karthikeyan, R., 2008, "Fatigue Life Prediction of ZE41A Magnesium Alloy Using Weibull Distribution," Materials and Design, Vol. 29, pp. 1549-1553. https://doi.org/10.1016/j.matdes.2008.01.001
  5. Shih, T.-S., Liu, W.-S. and Chen, Y.-J., 2002, "Fatigue of As-extruded AZ61A Magnesium Alloy," Materials Science & Engineering(A), Vol. 325, pp. 152-162. https://doi.org/10.1016/S0921-5093(01)01411-3
  6. Choi, S. S., 2009, "Effect of Mean Stress on Probability Distribution of Random Grown Crack Size in Magnesium Alloy AZ31," Journal of the KSMTE, Vol. 18, No. 5, pp. 536-543.
  7. Choi, S. S., 2009, "Estimation of Probability Distribution Fit for Fatigue Crack Propagation Life of AZ31 Magnesium Alloy," Transactions of the KSME(A), Vol. 33, No. 8, pp. 707-719. https://doi.org/10.3795/KSME-A.2009.33.8.707
  8. Choi, S. S. and Lee, O. S., 2009, "Effect of Specimen Thickness on Probability Distribution of Fatigue Crack Propagation Behavior in Magnesium Alloy AZ31," Journal of the KSMTE, Vol. 18, No. 4, pp. 395-400.
  9. Choi, S. S., 2009, "Effect of Mean Stress on Probability Distribution of Fatigue Crack Propagation Behavior in Magnesium Alloy AZ31," Proceedings of the KOSME Spring Conference 2009.
  10. Choi, S. S., 2010, "Effect of Maximum Load on Fatigue Crack Propagation Behavior in Mg Alloy Under Constant Amplitude Loading," Proceedings of the KSMTE Spring Conference 2010.
  11. Choi, S. S., 2010, "Influence of Specimen Thickness on Fatigue Crack Propagation Behavior in Mg Alloy," Proceedings of the KSMTE Spring Conference 2010.
  12. ASTM E647-00, 2000, Standard Test Method of Fatigue Crack Growth Rates, ASTM International. Pennsylvania.
  13. Haldar, A. and Mahadevan, S., 2000, Probability, Reliability, and Statistical Methods in Engineering Design, John Wiley & Sons Inc., U.S.A.

Cited by

  1. Evaluation of Probabilistic Fatigue Crack Propagation Models in Mg-Al-Zn Alloys Under Maximum Load Conditions Using Residual of Random Variable vol.39, pp.1, 2015, https://doi.org/10.3795/KSME-A.2015.39.1.063