• 제목/요약/키워드: private traffic information

검색결과 97건 처리시간 0.024초

지능형 위협인지 및 능동적 탐지대응을 위한 Snort 침입탐지규칙 연구 (Study of Snort Intrusion Detection Rules for Recognition of Intelligent Threats and Response of Active Detection)

  • 한동희;이상진
    • 정보보호학회논문지
    • /
    • 제25권5호
    • /
    • pp.1043-1057
    • /
    • 2015
  • 지능형 위협을 빠르게 인지하고 능동적으로 탐지 및 대응하기 위해 주요 공공단체 및 민간기관에서는 침입탐지시스템(IDS)을 관리 운영하고 있으며, 이는 공격의 검출 및 탐지에 매우 중요한 역할을 한다. 그러나 IDS 경보의 대부분은 오탐(false positive)을 생성하는 문제가 있다. 또한, 알려지지 않은 악성코드를 탐지하고 사전에 위협을 인지 대응하기 위해서 APT대응솔루션이나 행위기반체계를 도입 운영하고 있다. 이는 가상기술을 이용해 악성코드를 직접실행하고 가상환경에서 이상행위를 탐지하거나 또는 다른방식으로 알려지지 않은 공격을 탐지한다. 그러나 이 또한 가상환경 회피, 트래픽 전수조사에 대한 성능적 문제, 정책오류 등의 약점 등이 존재한다. 이에 따라 결과적으로 효과적인 침입탐지를 위해서는 보안관제 고도화가 매우 중요하다. 본 논문에서는 보안관제 고도화의 한가지 방안으로 침입탐지시스템의 주요 단점인 오탐(false positive)을 줄이는 방안에 대해 논한다. G기관의 경험적 데이터를 근거로 실험을 수행한 결과 세 가지 유형 11가지 규칙을 도출하였다. 이 규칙을 준수하여 테스트한 결과 전반적인 오탐율이 30%~50% 이상 줄어들고 성능이 30% 이상 향상됨을 검증하였다.

링크 공간평균속도 신뢰성 확보를 위한 프로브 차량 데이터 적정 수집주기 산정 연구 (Probe Vehicle Data Collecting Intervals for Completeness of Link-based Space Mean Speed Estimation)

  • 오창환;원민수;송태진
    • 한국ITS학회 논문지
    • /
    • 제19권5호
    • /
    • pp.70-81
    • /
    • 2020
  • GPS가 탑재된 차내 단말기, 스마트폰에서 방대하게 수집되는 초 단위 위치(위·경도) 데이터는 교통 분야에 다양하게 활용되고 있다. 이러한 데이터는 공공의 교통관련 의사결정자들과 교통서비스를 개발·제공하는 민간회사들에게 운전자들의 행태와 교통흐름을 미시적으로 파악할 수 있게 한다. 특히, 속도 데이터는 통행시간 예측에 주요한 정보로 활용되며, 해상도 높은 데이터 기반의 고차원 서비스 개발에 이용되고 있어 신뢰성있는 정보의 확보가 요구된다. 그럼에도 불구하고 링크별 속도 산출 시 각기 다른 저장, 수집주기 등을 기준으로 사용하고 있어 정보 활용에 있어 신뢰성을 담보하기 어렵다. 본 연구의 목적은 차내 단말기를 장착한 프로브차량 데이터를 수집해 링크 공간평균속도를 산출하고 동일 구간 및 시간대의 영상기반 공간평균속도와 비교분석을 통해 오차율을 도출하는 것이다. 수집주기와 실제 속도 상황에 따른 오차율을 분석한 결과 8초 이내 수집주기에서 95% 신뢰수준을 보였으며 이를 공간평균속도 산출 시 신뢰성확보를 위한 적정 수집 주기로 제안했다. 해당 결과는 향후 커넥티드 환경에서 수집될 핵심 정보들의 신뢰성 확보와 서비스 개발 시 기초 정보로 활용될 것으로 기대해본다.

한정된 O-D조사자료를 이용한 주 전체의 트럭교통예측방법 개발 (DEVELOPMENT OF STATEWIDE TRUCK TRAFFIC FORECASTING METHOD BY USING LIMITED O-D SURVEY DATA)

  • 박만배
    • 대한교통학회:학술대회논문집
    • /
    • 대한교통학회 1995년도 제27회 학술발표회
    • /
    • pp.101-113
    • /
    • 1995
  • The objective of this research is to test the feasibility of developing a statewide truck traffic forecasting methodology for Wisconsin by using Origin-Destination surveys, traffic counts, classification counts, and other data that are routinely collected by the Wisconsin Department of Transportation (WisDOT). Development of a feasible model will permit estimation of future truck traffic for every major link in the network. This will provide the basis for improved estimation of future pavement deterioration. Pavement damage rises exponentially as axle weight increases, and trucks are responsible for most of the traffic-induced damage to pavement. Consequently, forecasts of truck traffic are critical to pavement management systems. The pavement Management Decision Supporting System (PMDSS) prepared by WisDOT in May 1990 combines pavement inventory and performance data with a knowledge base consisting of rules for evaluation, problem identification and rehabilitation recommendation. Without a r.easonable truck traffic forecasting methodology, PMDSS is not able to project pavement performance trends in order to make assessment and recommendations in the future years. However, none of WisDOT's existing forecasting methodologies has been designed specifically for predicting truck movements on a statewide highway network. For this research, the Origin-Destination survey data avaiiable from WisDOT, including two stateline areas, one county, and five cities, are analyzed and the zone-to'||'&'||'not;zone truck trip tables are developed. The resulting Origin-Destination Trip Length Frequency (00 TLF) distributions by trip type are applied to the Gravity Model (GM) for comparison with comparable TLFs from the GM. The gravity model is calibrated to obtain friction factor curves for the three trip types, Internal-Internal (I-I), Internal-External (I-E), and External-External (E-E). ~oth "macro-scale" calibration and "micro-scale" calibration are performed. The comparison of the statewide GM TLF with the 00 TLF for the macro-scale calibration does not provide suitable results because the available 00 survey data do not represent an unbiased sample of statewide truck trips. For the "micro-scale" calibration, "partial" GM trip tables that correspond to the 00 survey trip tables are extracted from the full statewide GM trip table. These "partial" GM trip tables are then merged and a partial GM TLF is created. The GM friction factor curves are adjusted until the partial GM TLF matches the 00 TLF. Three friction factor curves, one for each trip type, resulting from the micro-scale calibration produce a reasonable GM truck trip model. A key methodological issue for GM. calibration involves the use of multiple friction factor curves versus a single friction factor curve for each trip type in order to estimate truck trips with reasonable accuracy. A single friction factor curve for each of the three trip types was found to reproduce the 00 TLFs from the calibration data base. Given the very limited trip generation data available for this research, additional refinement of the gravity model using multiple mction factor curves for each trip type was not warranted. In the traditional urban transportation planning studies, the zonal trip productions and attractions and region-wide OD TLFs are available. However, for this research, the information available for the development .of the GM model is limited to Ground Counts (GC) and a limited set ofOD TLFs. The GM is calibrated using the limited OD data, but the OD data are not adequate to obtain good estimates of truck trip productions and attractions .. Consequently, zonal productions and attractions are estimated using zonal population as a first approximation. Then, Selected Link based (SELINK) analyses are used to adjust the productions and attractions and possibly recalibrate the GM. The SELINK adjustment process involves identifying the origins and destinations of all truck trips that are assigned to a specified "selected link" as the result of a standard traffic assignment. A link adjustment factor is computed as the ratio of the actual volume for the link (ground count) to the total assigned volume. This link adjustment factor is then applied to all of the origin and destination zones of the trips using that "selected link". Selected link based analyses are conducted by using both 16 selected links and 32 selected links. The result of SELINK analysis by u~ing 32 selected links provides the least %RMSE in the screenline volume analysis. In addition, the stability of the GM truck estimating model is preserved by using 32 selected links with three SELINK adjustments, that is, the GM remains calibrated despite substantial changes in the input productions and attractions. The coverage of zones provided by 32 selected links is satisfactory. Increasing the number of repetitions beyond four is not reasonable because the stability of GM model in reproducing the OD TLF reaches its limits. The total volume of truck traffic captured by 32 selected links is 107% of total trip productions. But more importantly, ~ELINK adjustment factors for all of the zones can be computed. Evaluation of the travel demand model resulting from the SELINK adjustments is conducted by using screenline volume analysis, functional class and route specific volume analysis, area specific volume analysis, production and attraction analysis, and Vehicle Miles of Travel (VMT) analysis. Screenline volume analysis by using four screenlines with 28 check points are used for evaluation of the adequacy of the overall model. The total trucks crossing the screenlines are compared to the ground count totals. L V/GC ratios of 0.958 by using 32 selected links and 1.001 by using 16 selected links are obtained. The %RM:SE for the four screenlines is inversely proportional to the average ground count totals by screenline .. The magnitude of %RM:SE for the four screenlines resulting from the fourth and last GM run by using 32 and 16 selected links is 22% and 31 % respectively. These results are similar to the overall %RMSE achieved for the 32 and 16 selected links themselves of 19% and 33% respectively. This implies that the SELINICanalysis results are reasonable for all sections of the state.Functional class and route specific volume analysis is possible by using the available 154 classification count check points. The truck traffic crossing the Interstate highways (ISH) with 37 check points, the US highways (USH) with 50 check points, and the State highways (STH) with 67 check points is compared to the actual ground count totals. The magnitude of the overall link volume to ground count ratio by route does not provide any specific pattern of over or underestimate. However, the %R11SE for the ISH shows the least value while that for the STH shows the largest value. This pattern is consistent with the screenline analysis and the overall relationship between %RMSE and ground count volume groups. Area specific volume analysis provides another broad statewide measure of the performance of the overall model. The truck traffic in the North area with 26 check points, the West area with 36 check points, the East area with 29 check points, and the South area with 64 check points are compared to the actual ground count totals. The four areas show similar results. No specific patterns in the L V/GC ratio by area are found. In addition, the %RMSE is computed for each of the four areas. The %RMSEs for the North, West, East, and South areas are 92%, 49%, 27%, and 35% respectively, whereas, the average ground counts are 481, 1383, 1532, and 3154 respectively. As for the screenline and volume range analyses, the %RMSE is inversely related to average link volume. 'The SELINK adjustments of productions and attractions resulted in a very substantial reduction in the total in-state zonal productions and attractions. The initial in-state zonal trip generation model can now be revised with a new trip production's trip rate (total adjusted productions/total population) and a new trip attraction's trip rate. Revised zonal production and attraction adjustment factors can then be developed that only reflect the impact of the SELINK adjustments that cause mcreases or , decreases from the revised zonal estimate of productions and attractions. Analysis of the revised production adjustment factors is conducted by plotting the factors on the state map. The east area of the state including the counties of Brown, Outagamie, Shawano, Wmnebago, Fond du Lac, Marathon shows comparatively large values of the revised adjustment factors. Overall, both small and large values of the revised adjustment factors are scattered around Wisconsin. This suggests that more independent variables beyond just 226; population are needed for the development of the heavy truck trip generation model. More independent variables including zonal employment data (office employees and manufacturing employees) by industry type, zonal private trucks 226; owned and zonal income data which are not available currently should be considered. A plot of frequency distribution of the in-state zones as a function of the revised production and attraction adjustment factors shows the overall " adjustment resulting from the SELINK analysis process. Overall, the revised SELINK adjustments show that the productions for many zones are reduced by, a factor of 0.5 to 0.8 while the productions for ~ relatively few zones are increased by factors from 1.1 to 4 with most of the factors in the 3.0 range. No obvious explanation for the frequency distribution could be found. The revised SELINK adjustments overall appear to be reasonable. The heavy truck VMT analysis is conducted by comparing the 1990 heavy truck VMT that is forecasted by the GM truck forecasting model, 2.975 billions, with the WisDOT computed data. This gives an estimate that is 18.3% less than the WisDOT computation of 3.642 billions of VMT. The WisDOT estimates are based on the sampling the link volumes for USH, 8TH, and CTH. This implies potential error in sampling the average link volume. The WisDOT estimate of heavy truck VMT cannot be tabulated by the three trip types, I-I, I-E ('||'&'||'pound;-I), and E-E. In contrast, the GM forecasting model shows that the proportion ofE-E VMT out of total VMT is 21.24%. In addition, tabulation of heavy truck VMT by route functional class shows that the proportion of truck traffic traversing the freeways and expressways is 76.5%. Only 14.1% of total freeway truck traffic is I-I trips, while 80% of total collector truck traffic is I-I trips. This implies that freeways are traversed mainly by I-E and E-E truck traffic while collectors are used mainly by I-I truck traffic. Other tabulations such as average heavy truck speed by trip type, average travel distance by trip type and the VMT distribution by trip type, route functional class and travel speed are useful information for highway planners to understand the characteristics of statewide heavy truck trip patternS. Heavy truck volumes for the target year 2010 are forecasted by using the GM truck forecasting model. Four scenarios are used. Fo~ better forecasting, ground count- based segment adjustment factors are developed and applied. ISH 90 '||'&'||' 94 and USH 41 are used as example routes. The forecasting results by using the ground count-based segment adjustment factors are satisfactory for long range planning purposes, but additional ground counts would be useful for USH 41. Sensitivity analysis provides estimates of the impacts of the alternative growth rates including information about changes in the trip types using key routes. The network'||'&'||'not;based GMcan easily model scenarios with different rates of growth in rural versus . . urban areas, small versus large cities, and in-state zones versus external stations. cities, and in-state zones versus external stations.

  • PDF

Hybrid CNN-LSTM 알고리즘을 활용한 도시철도 내 피플 카운팅 연구 (A Study on People Counting in Public Metro Service using Hybrid CNN-LSTM Algorithm)

  • 최지혜;김민승;이찬호;최정환;이정희;성태응
    • 지능정보연구
    • /
    • 제26권2호
    • /
    • pp.131-145
    • /
    • 2020
  • 산업혁신의 흐름에 발맞추어 다양한 분야에서 활용되고 있는 IoT 기술은 빅데이터의 접목을 통한 새로운 비즈니스 모델의 창출 및 사용자 친화적 서비스 제공의 핵심적인 요소로 부각되고 있다. 사물인터넷이 적용된 디바이스에서 누적된 데이터는 사용자 환경 및 패턴 분석을 통해 맞춤형 지능 시스템을 제공해줄 수 있어 편의 기반 스마트 시스템 구축에 다방면으로 활용되고 있다. 최근에는 이를 공공영역 혁신에 확대 적용하여 CCTV를 활용한 교통 범죄 문제 해결 등 스마트시티, 스마트 교통 등에 활용하고 있다. 그러나 이미지 데이터를 활용하는 기존 연구에서는 개인에 대한 사생활 침해 문제 및 비(非)일반적 상황에서 객체 감지 성능이 저하되는 한계가 있다. 본 연구에 활용된 IoT 디바이스 기반의 센서 데이터는 개인에 대한 식별이 불필요해 사생활 이슈로부터 자유로운 데이터로, 불특정 다수를 위한 지능형 공공서비스 구축에 효과적으로 활용될 수 있다. 대다수의 국민들이 일상적으로 활용하는 도시철도에서의 지능형 보행자 트래킹 시스템에 IoT 기반의 적외선 센서 디바이스를 활용하고자 하였으며 센서로부터 측정된 온도 데이터를 실시간 송출하고, CNN-LSTM(Convolutional Neural Network-Long Short Term Memory) 알고리즘을 활용하여 구간 내 보행 인원의 수를 예측하고자 하였다. 실험 결과 MLP(Multi-Layer Perceptron) 및 LSTM(Long Short-Term Memory), RNN-LSTM(Recurrent Neural Network-Long Short Term Memory)에 비해 제안한 CNN-LSTM 하이브리드 모형이 가장 우수한 예측성능을 보임을 확인하였다. 본 논문에서 제안한 디바이스 및 모델을 활용하여 그간 개인정보와 관련된 법적 문제로 인해 서비스 제공이 미흡했던 대중교통 내 실시간 모니터링 및 혼잡도 기반의 위기상황 대응 서비스 등 종합적 메트로 서비스를 제공할 수 있을 것으로 기대된다.

A Possible Path per Link CBR Algorithm for Interference Avoidance in MPLS Networks

  • Sa-Ngiamsak, Wisitsak;Varakulsiripunth, Ruttikorn
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.772-776
    • /
    • 2004
  • This paper proposes an interference avoidance approach for Constraint-Based Routing (CBR) algorithm in the Multi-Protocol Label Switching (MPLS) network. The MPLS network itself has a capability of integrating among any layer-3 protocols and any layer-2 protocols of the OSI model. It is based on the label switching technology, which is fast and flexible switching technique using pre-defined Label Switching Paths (LSPs). The MPLS network is a solution for the Traffic Engineering(TE), Quality of Service (QoS), Virtual Private Network (VPN), and Constraint-Based Routing (CBR) issues. According to the MPLS CBR, routing performance requirements are capability for on-line routing, high network throughput, high network utilization, high network scalability, fast rerouting performance, low percentage of call-setup request blocking, and low calculation complexity. There are many previously proposed algorithms such as minimum hop (MH) algorithm, widest shortest path (WSP) algorithm, and minimum interference routing algorithm (MIRA). The MIRA algorithm is currently seemed to be the best solution for the MPLS routing problem in case of selecting a path with minimum interference level. It achieves lower call-setup request blocking, lower interference level, higher network utilization and higher network throughput. However, it suffers from routing calculation complexity which makes it difficult to real task implementation. In this paper, there are three objectives for routing algorithm design, which are minimizing interference levels with other source-destination node pairs, minimizing resource usage by selecting a minimum hop path first, and reducing calculation complexity. The proposed CBR algorithm is based on power factor calculation of total amount of possible path per link and the residual bandwidth in the network. A path with high power factor should be considered as minimum interference path and should be selected for path setup. With the proposed algorithm, all of the three objectives are attained and the approach of selection of a high power factor path could minimize interference level among all source-destination node pairs. The approach of selection of a shortest path from many equal power factor paths approach could minimize the usage of network resource. Then the network has higher resource reservation for future call-setup request. Moreover, the calculation of possible path per link (or interference level indicator) is run only whenever the network topology has been changed. Hence, this approach could reduce routing calculation complexity. The simulation results show that the proposed algorithm has good performance over high network utilization, low call-setup blocking percentage and low routing computation complexity.

  • PDF

Optimizing Clustering and Predictive Modelling for 3-D Road Network Analysis Using Explainable AI

  • Rotsnarani Sethy;Soumya Ranjan Mahanta;Mrutyunjaya Panda
    • International Journal of Computer Science & Network Security
    • /
    • 제24권9호
    • /
    • pp.30-40
    • /
    • 2024
  • Building an accurate 3-D spatial road network model has become an active area of research now-a-days that profess to be a new paradigm in developing Smart roads and intelligent transportation system (ITS) which will help the public and private road impresario for better road mobility and eco-routing so that better road traffic, less carbon emission and road safety may be ensured. Dealing with such a large scale 3-D road network data poses challenges in getting accurate elevation information of a road network to better estimate the CO2 emission and accurate routing for the vehicles in Internet of Vehicle (IoV) scenario. Clustering and regression techniques are found suitable in discovering the missing elevation information in 3-D spatial road network dataset for some points in the road network which is envisaged of helping the public a better eco-routing experience. Further, recently Explainable Artificial Intelligence (xAI) draws attention of the researchers to better interprete, transparent and comprehensible, thus enabling to design efficient choice based models choices depending upon users requirements. The 3-D road network dataset, comprising of spatial attributes (longitude, latitude, altitude) of North Jutland, Denmark, collected from publicly available UCI repositories is preprocessed through feature engineering and scaling to ensure optimal accuracy for clustering and regression tasks. K-Means clustering and regression using Support Vector Machine (SVM) with radial basis function (RBF) kernel are employed for 3-D road network analysis. Silhouette scores and number of clusters are chosen for measuring cluster quality whereas error metric such as MAE ( Mean Absolute Error) and RMSE (Root Mean Square Error) are considered for evaluating the regression method. To have better interpretability of the Clustering and regression models, SHAP (Shapley Additive Explanations), a powerful xAI technique is employed in this research. From extensive experiments , it is observed that SHAP analysis validated the importance of latitude and altitude in predicting longitude, particularly in the four-cluster setup, providing critical insights into model behavior and feature contributions SHAP analysis validated the importance of latitude and altitude in predicting longitude, particularly in the four-cluster setup, providing critical insights into model behavior and feature contributions with an accuracy of 97.22% and strong performance metrics across all classes having MAE of 0.0346, and MSE of 0.0018. On the other hand, the ten-cluster setup, while faster in SHAP analysis, presented challenges in interpretability due to increased clustering complexity. Hence, K-Means clustering with K=4 and SVM hybrid models demonstrated superior performance and interpretability, highlighting the importance of careful cluster selection to balance model complexity and predictive accuracy.

세종시 데이터 증거기반 정책수립을 위한 대시보드 디자인에 관한 연구 (Dashboard Design for Evidence-based Policymaking of Sejong City Government)

  • 박진아;안세윤
    • 한국콘텐츠학회논문지
    • /
    • 제19권12호
    • /
    • pp.173-183
    • /
    • 2019
  • 최근 세종시는 개발 및 정비가 추진되면서 여러 분야에서 발생하는 사회문제를 해결하기 위해, 축적된 데이터의 활용이 대두되고 있다. 세종시가 추진 중이거나 추진예정 중인 정책의 품질 제고 및 사회적 변화에 대응하는 정책수립 및 운영에 축적된 데이터를 활용하여 과학적 정책수립의 필요성이 강조되고 있다. 특히, 경제사회구조의 급속한 변화 속에서 한정된 자원을 유효하게 활용하여 시민이 신뢰하는 정책을 전개하기 위해 데이터를 활용한 객관적인 접근으로 정책수립 과정에서 더욱 정확한 정책을 형성하는데 필요한 데이터 정비와 증거기반의 정책 검토가 더욱 강조되고 있다. 본 연구는 세종시 증거기반 정책수립을 위한 대시보드 구축을 위해 파일 데이터, 오픈 API, 주요 생활지표 데이터, 분야별 정보 데이터, 통계간행물, 통계DB 데이터를 활용하여 데이터 인포그래픽 대시보드를 디자인하였다. 대시보드 디자인은 세종시 생활지표인 사회, 인구, 경제, 부동산, 교통, 환경, 건강, 인프라 지표 데이터를 시각화하고, 데이터를 상호 연계하여 정책수립 및 운영에 주요 사회동향을 파악하는데 적용·활용될 수 있도록 구조적 마크업(HTML), 표현 및 레이아웃(CSS), 자바스크립트 (JavaScript)로 인포그래픽 대시보드를 디자인하였다.