International Journal of Computer Science & Network Security
/
v.24
no.8
/
pp.205-213
/
2024
As the Restaurant industry is growing rapidly. The demand for an effortless POS (Point Of Sale) system which can make management easy is increasing. So, the purpose of this study is to digitalise the growing industry of restaurants and its consumers by utilizing cross-platform development. Crossplatform development frameworks provide great opportunities to solve the issues of handling ubiquitous devices with minimum efforts to reduce the cost and increase the stability, accessibility of the end consumers. By availing those opportunities, an Integrated POS system with cross platform is proposed. This integrated cross-platform POS system is originally designed for a single restaurant managed by its own private cloud server. This research solves the 2 major problems. One of them is the accessibility of the system on modern devices without even writing platform-specific code with the help of cross-platform development. This included web, mobile, desktops & tablets at the same time with the same codebase. Second one is handling data consistency with ubiquitous devices with the help of cloud infrastructure to make data safe and consistent more than ever. In the Development of this system Dart will be used as the primary programming language for cross-platform development. On the Cloud server system apache will be used as the web server and PHP as server side language. System will be using MySQL as the database server.
In cloud storage environment, deduplication enables efficient use of the storage. Also, in order to save network bandwidth, cloud storage service provider has introduced client-side deduplication. Cloud storage service users want to upload encrypted data to ensure confidentiality. However, common encryption method cannot be combined with deduplication, because each user uses a different private key. Also, client-side deduplication can be vulnerable to security threats because file tag replaces the entire file. Recently, proof of ownership schemes have suggested to remedy the vulnerabilities of client-side deduplication. Nevertheless, client-side deduplication over encrypted data still causes problems in efficiency and security. In this paper, we propose a secure and practical client-side encrypted data deduplication scheme that has resilience to brute force attack and performs proof of ownership over encrypted data.
Most mobile cloud computing system use public key cryptography to provide data security and mutual authentication. A variant of traditional public key technologies called Identity-Based Cryptography(IBC) has recently received considerable attention. The certificate-free approach of IBC may well match the dynamic qualities of cloud environment. But, there is a need for a lightweight secure framework that provides security with minimum processing overhead on mobile devices. In this paper, we propose to use hierarchical ID-Based Encryption in mobile cloud computing. It is suitable for a mobile network since it can reduce the workload of root Public Key Generators by delegating the privilege of user authentication and private key generation. The Identity-Based Encryption and Identity-Based Signature are also proposed and an ID-Based Authentication scheme is presented to secure data processing. The proposed scheme is designed by one-way hash functions and XOR operations, thus has low computation costs for mobile users.
Recently, healthcare services are using cloud services to efficiently manage users' healthcare data. However, research to ensure the stability of the user's healthcare data processed in the cloud environment is insufficient. In this paper, we propose a partial random encryption scheme that efficiently encrypts healthcare data in a cloud environment. The proposed scheme generates two random keys (p, q) generated by the user to optimize for the hospital medical service and reflects them in public key and private key generation. The random key used in the proposed scheme improves the efficiency of user 's healthcare data processing by encrypting only part of the data without encrypting the whole data. As a result of the performance evaluation, the proposed method showed 21.6% lower than the existing method and 18.5% improved the user healthcare data processing time in the hospital.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.15
no.12
/
pp.4345-4363
/
2021
Deep Learning as a Service (DLaaS), utilizing the cloud-based deep neural network models to provide customer prediction services, has been widely deployed on mobile cloud computing (MCC). Such services raise privacy concerns since customers need to send private data to untrusted service providers. In this paper, we devote ourselves to building an efficient protocol to classify users' images using the convolutional neural network (CNN) model trained and held by the server, while keeping both parties' data secure. Most previous solutions commonly employ homomorphic encryption schemes based on Ring Learning with Errors (RLWE) hardness or two-party secure computation protocols to achieve it. However, they have limitations on large communication overheads and costs in MCC. To address this issue, we present LeHE4SCNN, a scalable privacy-preserving and communication-efficient framework for CNN-based DLaaS. Firstly, we design a novel low-expansion rate homomorphic encryption scheme with packing and unpacking methods (LeHE). It supports fast homomorphic operations such as vector-matrix multiplication and addition. Then we propose a secure prediction framework for CNN. It employs the LeHE scheme to compute linear layers while exploiting the data shuffling technique to perform non-linear operations. Finally, we implement and evaluate LeHE4SCNN with various CNN models on a real-world dataset. Experimental results demonstrate the effectiveness and superiority of the LeHE4SCNN framework in terms of response time, usage cost, and communication overhead compared to the state-of-the-art methods in the mobile cloud computing environment.
Journal of the Korea Society of Computer and Information
/
v.18
no.7
/
pp.11-21
/
2013
Recently operating a large scale computing resource like a data center becomes easier because of the virtualization technology that virtualize servers and enable flexible resource provision. The most of public cloud services provides automatic scaling in the form of scale-in or scale-out and these scaling approaches works well to satisfy the service level agreement (SLA) of users. However, a novel scaling approach is required to operate private clouds that has smaller amount of computing resources than vast resources of public clouds. In this paper, we propose a hybrid server scaling architecture and related algorithms using both scale-in and scale-out to achieve higher resource utilization rate for private clouds. We uses dynamic resource allocation and live migration to run our proposed algorithm. Our propose system aims to provide a fine-grain resource scaling by steps. Thus private cloud systems are able to keep stable service and to reduce server management cost by optimizing server utilization. The experiment results show that our proposed approach performs better in resource utilization than the scale-out approach based on the number of users.
Proceedings of the Korean Society of Computer Information Conference
/
2021.07a
/
pp.679-680
/
2021
본 논문에서는 개인용 하드웨어를 통해 인증을 강화하고 이를 활용하여 개인 클라우드를 제공할 수 있는 개인용 보안장비인 DONO를 제안한다. 또한 DONO를 활용하여 보다 규모가 확장된 클라우드 서비스를 제안하고 이를 활용하여 실제 서비스가 가능함을 보여주도록 한다. DONO가 사용하는 환경은 기존의 네트워크 시스템을 따르는 대신 콘텐츠 중심의 통신을 통해 면역 기반 보안 시스템을 구축한다. 데이터 전송은 CCN(Content Centric Network)을 통해 이루어지며 CCNx 그룹이 검증한 프로토콜을 활용한다. DONO에 의해 보호되는 영역은 일반적인 네트워크 통신을 사용하지 않고 CCN 프로토콜에 따라서 운영하며 이를 통해 기존의 보안 공격과 추가적으로 알 수 없는 공격으로부터 시스템을 보호할 수 있다. 이러한 새로운 방식을 활용해 클라우드 시스템을 제공하며 보다 안전한 서비스를 활용할 수 있음을 보이도록 한다.
Amid the unprecedented situation of COVID-19 around the world, online education has established itself as an essential element in the era of zero contact and the importance of various content and changes of the system that are appropriate for the era of the 4th industrial revolution has increased. Although universities are making their efforts to combine ICT technologies and design and achieve new systems, the recognition and atmosphere for establishing the cloud computing system are falling short. The purpose of this research importance of success factors of "Building a cloud computing system of cyber university in Korea" by classifying the work characteristics and scale, and to derive and analyze the importance cloud rankings considering the organization and individual dimension. Therefore, this study has drawn 14 major factors in the previous researches and models through the survey on experts with knowledge related to the cloud computing. The analysis was conducted to see what differences there are in factors for the successful establishment of the cloud computing system using AHP. It is expected that the factors for success presented through this study would be used as systemic strategies and tools for the purpose of drawing factors for the success of establishing the private cloud computing system for the higher education institutions and public information systems.
Dongkwan Kim;Yongwoo Lee;Seonyoung Cheon;Heelim Choi;Jaeho Lee;Hoyun Youm;Hanjun Kim
The Transactions of the Korea Information Processing Society
/
v.13
no.7
/
pp.291-298
/
2024
Despite its wide application, cloud computing raises privacy leakage concerns because users should send their private data to the cloud. Homomorphic encryption (HE) can resolve the concerns by allowing cloud servers to compute on encrypted data without decryption. However, due to the huge computation overhead of HE, simply executing an entire cloud program with HE causes significant computation. Manually partitioning the program and applying HE only to the partitioned program for the cloud can reduce the computation overhead. However, the manual code partitioning and HE-transformation are time-consuming and error-prone. This work proposes a new homomorphic encryption enabled annotation-guided code partitioning compiler, called Heapa, for privacy preserving cloud computing. Heapa allows programmers to annotate a program about the code region for cloud computing. Then, Heapa analyzes the annotated program, makes a partition plan with a variable list that requires communication and encryption, and generates a homomorphic encryptionenabled partitioned programs. Moreover, Heapa provides not only two region-level partitioning annotations, but also two instruction-level annotations, thus enabling a fine-grained partitioning and achieving better performance. For six machine learning and deep learning applications, Heapa achieves a 3.61 times geomean performance speedup compared to the non-partitioned cloud computing scheme.
Wu, Chuanrong;Tan, Ning;Lu, Zhi;Yang, Xiaoming;McMurtrey, Mark E.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.15
no.8
/
pp.3068-3085
/
2021
The economics of big data knowledge, especially cloud computing and statistical data of consumer preferences, has attracted increasing academic and industry practitioners' attention. Firms nowadays require purchasing not only external private patent knowledge from other firms, but also proprietary big data knowledge to support their new product development. Extant research investigates pricing strategies of external private patent knowledge and proprietary big data knowledge separately. Yet, a comprehensive investigation of pricing strategies of these two types of knowledge is in pressing need. This research constructs an overarching pricing model of external private patent knowledge and proprietary big data knowledge through the lens of firm profitability as a knowledge transaction recipient. The proposed model can help those firms who purchase external knowledge choose the optimal knowledge structure and pricing strategies of two types of knowledge, and provide theoretical and methodological guidance for knowledge transaction recipient firms to negotiate with knowledge providers.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.